During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes ar...During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.展开更多
Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties an...Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts.展开更多
In this paper, a novel method of producing nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Silver nanoparticles were obtained by this method in...In this paper, a novel method of producing nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Silver nanoparticles were obtained by this method in our Plasma Enhanced Chemical Vapor Deposition system. Optical and morphological characteristics of these nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thickness of the initial thin metallic film etc. In addition, Ag-Cu alloy nanoparticles on glass substrates were also achieved. The process of nanoparticle formation in this method shows that several kinds of metals and semiconductors nanoparticles can be obtained using this approach. Scanning Electron Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy were used to analyze the nanostructures.展开更多
Thermal treatment either in the presence of oxygen (calcination) or of a reducing agent (reduction) result is all the time a key issue within the preparation of a catalyst. In this work, a microwave plasma treatment w...Thermal treatment either in the presence of oxygen (calcination) or of a reducing agent (reduction) result is all the time a key issue within the preparation of a catalyst. In this work, a microwave plasma treatment was chosen as an alternative to typical calcinations, because it is a more energy efficient process. Thus, a Microwave Fluidized Bed Plasma reactor (MFBP) was employed in catalyst synthesis process under different gas compositions, such as argon and argon/oxygen mixtures over g-alumina supported silver catalysts, which are generally used for selective reduction of NOx by ethanol. After the first catalytic tests performed in the presence of plasma treated catalyst, it can be concluded that plasma treatment process represents an interesting alternative to conventional calcination during catalyst synthesis, resulting in a more sustainable process, moreover in view of its industrial application. In order to understand the particular effect of plasma treatment, the catalysts submitted to this treatment were carefully characterized by means of thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and UV-VIS-NIR.展开更多
The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and withou...The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and without Ag nanoclusters were assessed through a combination of both conventional phenotypic analysis, using microscopy, and genotypic analysis, using the relative reverse transcription Real-Time Polymerase Chain Reaction (RT-PCR). The results suggest that the incorporation of Ag in organic coatings can significantly decrease bacterial adhesion and viability with time, in comparison to the organic coating alone. The initial Ag release though at concentrations lower than the bactericidal, significantly increased icaA gene expression for the bacteria interacting with the Ag containing coating two hours post adhesion, especially under the higher shear rate. Stress-inducing conditions such as sub-bactericidal concentrations of Ag and high shear rate can therefore increase icaA expression, indicating that analysis of gene expression can not only refine our knowledge of bacterial-material interactions, but also yield novel biomarkers for potential use in assessing biomaterials antimicrobial performance.展开更多
文摘During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
基金supported by National Natural Science Foundation of China(Nos.51277038 and 51307030)
文摘Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts.
文摘In this paper, a novel method of producing nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Silver nanoparticles were obtained by this method in our Plasma Enhanced Chemical Vapor Deposition system. Optical and morphological characteristics of these nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thickness of the initial thin metallic film etc. In addition, Ag-Cu alloy nanoparticles on glass substrates were also achieved. The process of nanoparticle formation in this method shows that several kinds of metals and semiconductors nanoparticles can be obtained using this approach. Scanning Electron Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy were used to analyze the nanostructures.
文摘Thermal treatment either in the presence of oxygen (calcination) or of a reducing agent (reduction) result is all the time a key issue within the preparation of a catalyst. In this work, a microwave plasma treatment was chosen as an alternative to typical calcinations, because it is a more energy efficient process. Thus, a Microwave Fluidized Bed Plasma reactor (MFBP) was employed in catalyst synthesis process under different gas compositions, such as argon and argon/oxygen mixtures over g-alumina supported silver catalysts, which are generally used for selective reduction of NOx by ethanol. After the first catalytic tests performed in the presence of plasma treated catalyst, it can be concluded that plasma treatment process represents an interesting alternative to conventional calcination during catalyst synthesis, resulting in a more sustainable process, moreover in view of its industrial application. In order to understand the particular effect of plasma treatment, the catalysts submitted to this treatment were carefully characterized by means of thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and UV-VIS-NIR.
文摘The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and without Ag nanoclusters were assessed through a combination of both conventional phenotypic analysis, using microscopy, and genotypic analysis, using the relative reverse transcription Real-Time Polymerase Chain Reaction (RT-PCR). The results suggest that the incorporation of Ag in organic coatings can significantly decrease bacterial adhesion and viability with time, in comparison to the organic coating alone. The initial Ag release though at concentrations lower than the bactericidal, significantly increased icaA gene expression for the bacteria interacting with the Ag containing coating two hours post adhesion, especially under the higher shear rate. Stress-inducing conditions such as sub-bactericidal concentrations of Ag and high shear rate can therefore increase icaA expression, indicating that analysis of gene expression can not only refine our knowledge of bacterial-material interactions, but also yield novel biomarkers for potential use in assessing biomaterials antimicrobial performance.