Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t...Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this...With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .展开更多
Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first...Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first,some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting of heterogeneous data sources,i.e.,disease similarity,protein interaction network,gene expression.Second,little approaches infer disease-related miRNAs depending on the network topological features without the functional similarity of miRNAs.In this paper,we develop a novel model of Integrating Network Topology Similarity and MicroRNA Function Similarity(INTS-MFS).The integrated miRNA similarities are calculated based on miRNA functional similarity and network topological characteristics.INTS-MFS obtained AUC of 0.872 based on five-fold cross-validation and was applied to three common human diseases in case studies.As a results,30 out of top 30 predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0.29 out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in dbDEMC,PhenomiR2.0 and experimental reports.Moreover,INTS-MFS found unknown association with hsa-mir-371a in breast cancer and lung cancer,which have not been reported.It provides biologists new clues for diagnosing breast and lung cancer.展开更多
This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady ...This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient t~ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n2 log~). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of t~ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups.展开更多
Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex...Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks.展开更多
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc...Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.展开更多
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences ...Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.展开更多
In most available recommendation algorithms, especially for rating systems, almost all the high rating information is utilized on the recommender system without using any low-rating information, which may include more...In most available recommendation algorithms, especially for rating systems, almost all the high rating information is utilized on the recommender system without using any low-rating information, which may include more user information and lead to the accuracy of recommender system being reduced. The paper proposes a algorithm of personalized recommendation (UNP algorithm) for rating system to fully explore the similarity of interests among users in utilizing all the information of rating data. In UNP algorithm, the similarity information of users is used to construct a user interest association network, and a recommendation list is established for the target user with combining the user interest association network information and the idea of collaborative filtering. Finally, the UNP algorithm is compared with several typical recommendation algorithms (CF algorithm, NBI algorithm and GRM algorithm), and the experimental results on Movielens and Netflix datasets show that the UNP algorithm has higher recommendation accuracy.展开更多
Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can mov...Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can move freely and organize themselves arbitrarily.Routing in these environments is difficult for the reason of the rapid changes of the social relationship graph's topology.Meanwhile,the social ties among nodes change overtime.Therefore,an efficient data forwarding mechanism should be considered over the temporal weighted relationship graph.In this paper,an Advanced routing Protocol based on Parameters Optimization in the Weighted mobile social network(APPOW) is proposed to improve the delivery success ratio and reduce the cost of exchanging information.APPOW combines the normalized relative weights of three local social metrics,i.e.,LinkRank,similarity and contact strength,to select the next relay node.The weights of the three metrics are derived by pair-wise learning algorithm.The result shows that APPOW outperforms the state-ofthe-art SimBet Routing in delivering message and significantly reduces the average hops.Additionally,the delivery performance of APPOW is close to Epidemic Routing but without message duplications.展开更多
It is necessary to construct an effective trust model to build trust relationship between peers in peer-to-peer (P2P) network and enhance the security and reliability of P2P systems. The current trust models only fo...It is necessary to construct an effective trust model to build trust relationship between peers in peer-to-peer (P2P) network and enhance the security and reliability of P2P systems. The current trust models only focus on the consumers' evaluation to a transaction, which may be abused by malicious peers to exaggerate or slander the provider deliberately. In this paper, we propose a novel trust model based on mutual evaluation, called METrust, to suppress the peers' malicious behavior, such as dishonest evaluation and strategic attack. METrust considers the factors including mutual evaluation, similarity risk, time window, incentive, and punishment mechanism. The trust value is composed of the direct trust value and the recommendation trust value. In order to inhibit dishonest evaluation, both participants should give evaluation information based on peers' own experiences about the transaction while computing the direct trust value. In view of this, the mutual evaluation consistency factor and its time decay function are proposed. Besides, to reduce the risk of computing the recommendation trust based on the recommendations of friend peers, the similarity risk is introduced to measure the uncertainty of the similarity computing, while similarity is used to measure credibility. The experimental results show that METrust is effective, and it has advantages in the inhibition of the various malicious behaviors.展开更多
Community detection in signed networks has been studied widely in recent years. In this paper, a discrete difference equation is proposed to imitate the consistently changing phases of the nodes. During the interactio...Community detection in signed networks has been studied widely in recent years. In this paper, a discrete difference equation is proposed to imitate the consistently changing phases of the nodes. During the interaction, each node will update its phase based on the difference equation. Each node has many different nodes connected with it, and these neighbors have different influences on it. The similarity between two nodes is applied to describe the influences between them. Nodes with high positive similarities will get together and nodes with negative similarities will be far away from each other.Communities are detected ultimately when the phases of the nodes are stable. Experiments on real world and synthetic signed networks show the efficiency of detection performance. Moreover, the presented method gains better detection performance than two existing good algorithms.展开更多
The emergence of Event-based Social Network(EBSN) data that contain both social and event information has cleared the way to study the social interactive relationship between the virtual interactions and physical inte...The emergence of Event-based Social Network(EBSN) data that contain both social and event information has cleared the way to study the social interactive relationship between the virtual interactions and physical interactions. In existing studies, it is not really clear which factors affect event similarity between online friends and the influence degree of each factor. In this study, a multi-layer network based on the Plancast service data is constructed. The the user’s events belongingness is shuffled by constructing two null models to detect offline event similarity between online friends. The results indicate that there is a strong correlation between online social proximity and offline event similarity. The micro-scale structures at multi-levels of the Plancast online social network are also maintained by constructing 0 k–3 k null models to study how the micro-scale characteristics of online networks affect the similarity of offline events. It is found that the assortativity pattern is a significant micro-scale characteristic to maintain offline event similarity. Finally, we study how structural diversity of online friends affects the offline event similarity. We find that the subgraph structure of common friends has no positive impact on event similarity while the number of common friends plays a key role, which is different from other studies. In addition, we discuss the randomness of different null models, which can measure the degree of information availability in privacy protection. Our study not only uncovers the factors that affect offline event similarity between friends but also presents a framework for understanding the pattern of human mobility.展开更多
文摘Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.
基金National Natural Science Foundation of China(No. 60970106)National High Technology Research and Development Program of China( No. 2011AA010500)
文摘With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61873089,62032007the Key Project of the Education Department of Hunan Province under Grant 20A087the Innovation Platform Open Fund Project of Hunan Provincial Education Department under Grant 20K025.
文摘Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first,some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting of heterogeneous data sources,i.e.,disease similarity,protein interaction network,gene expression.Second,little approaches infer disease-related miRNAs depending on the network topological features without the functional similarity of miRNAs.In this paper,we develop a novel model of Integrating Network Topology Similarity and MicroRNA Function Similarity(INTS-MFS).The integrated miRNA similarities are calculated based on miRNA functional similarity and network topological characteristics.INTS-MFS obtained AUC of 0.872 based on five-fold cross-validation and was applied to three common human diseases in case studies.As a results,30 out of top 30 predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0.29 out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in dbDEMC,PhenomiR2.0 and experimental reports.Moreover,INTS-MFS found unknown association with hsa-mir-371a in breast cancer and lung cancer,which have not been reported.It provides biologists new clues for diagnosing breast and lung cancer.
基金supported by the Fundamental Research Funds for the Central Universities (Grant Nos. KYZ200916,KYZ200919 and KYZ201005)the Youth Sci-Tech Innovation Fund,Nanjing Agricultural University (Grant No. KJ2010024)
文摘This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient t~ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n2 log~). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of t~ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups.
文摘Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks.
文摘Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
基金Supported by Major Projects of the National Science and Technology (2010ZX03003-003-02) National 973 Key Project (2011CB302903)
文摘Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.
文摘In most available recommendation algorithms, especially for rating systems, almost all the high rating information is utilized on the recommender system without using any low-rating information, which may include more user information and lead to the accuracy of recommender system being reduced. The paper proposes a algorithm of personalized recommendation (UNP algorithm) for rating system to fully explore the similarity of interests among users in utilizing all the information of rating data. In UNP algorithm, the similarity information of users is used to construct a user interest association network, and a recommendation list is established for the target user with combining the user interest association network information and the idea of collaborative filtering. Finally, the UNP algorithm is compared with several typical recommendation algorithms (CF algorithm, NBI algorithm and GRM algorithm), and the experimental results on Movielens and Netflix datasets show that the UNP algorithm has higher recommendation accuracy.
基金supported by NSFC (Grant No. 61172074, 61471028, 61371069, and 61272505)Fundamental Research Funds for the Central Universities under Grant No. 2015JBM016+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130009110015the financial support from China Scholarship Council
文摘Due to the increasing number of wireless mobile devices,the possibility of mobile communications without infrastructure becomes a reality.The Decentralized Mobile Social Network(DMSN) is a paradigm where nodes can move freely and organize themselves arbitrarily.Routing in these environments is difficult for the reason of the rapid changes of the social relationship graph's topology.Meanwhile,the social ties among nodes change overtime.Therefore,an efficient data forwarding mechanism should be considered over the temporal weighted relationship graph.In this paper,an Advanced routing Protocol based on Parameters Optimization in the Weighted mobile social network(APPOW) is proposed to improve the delivery success ratio and reduce the cost of exchanging information.APPOW combines the normalized relative weights of three local social metrics,i.e.,LinkRank,similarity and contact strength,to select the next relay node.The weights of the three metrics are derived by pair-wise learning algorithm.The result shows that APPOW outperforms the state-ofthe-art SimBet Routing in delivering message and significantly reduces the average hops.Additionally,the delivery performance of APPOW is close to Epidemic Routing but without message duplications.
基金supported by National Natural Science Foundation of China (No.60873231)Research Fund for the Doctoral Program of Higher Education (No.20093223120001)+2 种基金Science and Technology Support Program of Jiangsu Province (No.BE2009158)Natural Science Fund of Higher Education of Jiangsu Province(No.09KJB520010)Special Fund for Fast Sharing of Science Paper in Net Era by CSTD (No.2009117)
文摘It is necessary to construct an effective trust model to build trust relationship between peers in peer-to-peer (P2P) network and enhance the security and reliability of P2P systems. The current trust models only focus on the consumers' evaluation to a transaction, which may be abused by malicious peers to exaggerate or slander the provider deliberately. In this paper, we propose a novel trust model based on mutual evaluation, called METrust, to suppress the peers' malicious behavior, such as dishonest evaluation and strategic attack. METrust considers the factors including mutual evaluation, similarity risk, time window, incentive, and punishment mechanism. The trust value is composed of the direct trust value and the recommendation trust value. In order to inhibit dishonest evaluation, both participants should give evaluation information based on peers' own experiences about the transaction while computing the direct trust value. In view of this, the mutual evaluation consistency factor and its time decay function are proposed. Besides, to reduce the risk of computing the recommendation trust based on the recommendations of friend peers, the similarity risk is introduced to measure the uncertainty of the similarity computing, while similarity is used to measure credibility. The experimental results show that METrust is effective, and it has advantages in the inhibition of the various malicious behaviors.
基金supported by the National Natural Science Foundation of China(Grant Nos.11261034,71561020,61503203,and 11326239)the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2015MS0103 and 2014BS0105)
文摘Community detection in signed networks has been studied widely in recent years. In this paper, a discrete difference equation is proposed to imitate the consistently changing phases of the nodes. During the interaction, each node will update its phase based on the difference equation. Each node has many different nodes connected with it, and these neighbors have different influences on it. The similarity between two nodes is applied to describe the influences between them. Nodes with high positive similarities will get together and nodes with negative similarities will be far away from each other.Communities are detected ultimately when the phases of the nodes are stable. Experiments on real world and synthetic signed networks show the efficiency of detection performance. Moreover, the presented method gains better detection performance than two existing good algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61773091,61603073,61601081,and 61501107)the Natural Science Foundation of Liaoning Province,China(Grant No.201602200)
文摘The emergence of Event-based Social Network(EBSN) data that contain both social and event information has cleared the way to study the social interactive relationship between the virtual interactions and physical interactions. In existing studies, it is not really clear which factors affect event similarity between online friends and the influence degree of each factor. In this study, a multi-layer network based on the Plancast service data is constructed. The the user’s events belongingness is shuffled by constructing two null models to detect offline event similarity between online friends. The results indicate that there is a strong correlation between online social proximity and offline event similarity. The micro-scale structures at multi-levels of the Plancast online social network are also maintained by constructing 0 k–3 k null models to study how the micro-scale characteristics of online networks affect the similarity of offline events. It is found that the assortativity pattern is a significant micro-scale characteristic to maintain offline event similarity. Finally, we study how structural diversity of online friends affects the offline event similarity. We find that the subgraph structure of common friends has no positive impact on event similarity while the number of common friends plays a key role, which is different from other studies. In addition, we discuss the randomness of different null models, which can measure the degree of information availability in privacy protection. Our study not only uncovers the factors that affect offline event similarity between friends but also presents a framework for understanding the pattern of human mobility.