针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S...针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。展开更多
针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割...针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。展开更多
针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多...针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多个在感知上有意义的原子区域,并提取这些区域的代表像素点;对处在背景矩形框内的代表像素点进行Delaunay三角剖分,构建图结构;最后利用最小割最大流算法将图中的节点分为两部分,并将这些节点对应为相应的原子区域,达到将图像分割为前景和背景的目的。与其他交互式图像分割算法进行实验对比,结果表明所提算法在计算效率上有较大提升,并更为准确。展开更多
文摘针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。
文摘针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。
文摘针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多个在感知上有意义的原子区域,并提取这些区域的代表像素点;对处在背景矩形框内的代表像素点进行Delaunay三角剖分,构建图结构;最后利用最小割最大流算法将图中的节点分为两部分,并将这些节点对应为相应的原子区域,达到将图像分割为前景和背景的目的。与其他交互式图像分割算法进行实验对比,结果表明所提算法在计算效率上有较大提升,并更为准确。