[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of...[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.展开更多
The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly...The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly determined by varieties.Therefore,we investigated the genetic diversity of chemical compositions of tea tree resources in China to screen excellent germplasm resources.Three chemical compositions index(including chlorophyll index,flavonoid index,and anthocyanin index)and the nitrogen balance index of tea leaves were measured in 102 tea germplasms planted in Chinese Tea Plants Improved Variety Germplasm Resources Nursery(CTPIVGRN)by Dualex on April 152019.Results showed that the chlorophyll,flavonoid,and anthocyanin contents and the nitrogen balance index significantly differed between the 102 tea germplasms.The genetic diversity index values were 2.005,2.246,1.599,and 1.838,and the average genetic diversity was 1.922.The 102 tea germplasms can be divided into four categories by cluster analysis under the genetic distance threshold of 11.These results suggest that the genetic diversity of tea germplasm resources in China is rich.This study’s results can serve as a basis for the diversified development and utilization of tea plant.展开更多
Habitat pattern change of red-crowned cranes (Grus japonensis) in t he Liaohe Delta between 1988 and 1998 was analyzed with the help of Spatial Dive rsity Index based on remote sensing data and field investigation. Th...Habitat pattern change of red-crowned cranes (Grus japonensis) in t he Liaohe Delta between 1988 and 1998 was analyzed with the help of Spatial Dive rsity Index based on remote sensing data and field investigation. The result sho wed that the influence from human activities on the wetland habitat of red-crow ned cranes was prominent with the development of oil and agricultural exploitati on, and the habitat pattern of red-crowned cranes had been obviously changed by the human disturbance during the ten years. The areas with high Spatial Diversi ty values (SD≥0.65) and that with mid-high values (0.5≤SD< 0.65), which const ituted the main part of suitable habitat of red-crowned cranes,had reduced to 9142ha and 5576ha respectively, with the shrinking of natural land cover, such a s reed and Suaeda community. The habitat pattern became more fragmented, which w as caused by roads and wells during oil exploration. It was indicated that the s uitability and quality of habitat for red-crowned cranes in the Liaohe Delta we re degraded in the last decade. The results also showed that diversity index cou ld reflect the habitat suitability of red-crowned cranes quantitatively and des cribe the spatial pattern of the habitat explicitly. This study will provide a s cientific basis for habitat protection of red-crowned cranes and other rare spe cies in wetlands.展开更多
The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is...The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.展开更多
The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biod...The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.展开更多
α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or pl...α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or plot).Although such indices provide overall diversity estimates that can be analyzed,their values are not spatially continuous nor applicable in theory to any point within the study region,and thus they cannot be treated as spatial covariates for analyses of other variables.Herein,we extended the Simpson’s and Shannon-Wiener indices to create point estimates ofα-diversity for any location based on spatially explicit species occurrences within different bandwidths(i.e.,radii,with the location of interest as the center).For an arbitrary point in the study region,species occurrences within the circle plotting the bandwidth were weighted according to their distance from the center using a tri-cube kernel function,with occurrences closer to the center having greater weight than more distant ones.These novel kernel-basedα-diversity indices were tested using a tree dataset from a 400 m×400 m study region comprising a 200 m×200 m core region surrounded by a 100-m width buffer zone.Our newly extendedα-diversity indices did not disagree qualitatively with the traditional indices,and the former were slightly lower than the latter by<2%at medium and large band widths.The present work demonstrates the feasibility of using kernel-basedα-diversity indices to estimate diversity at any location in the study region and allows them to be used as quantifiable spatial covariates or predictors for other dependent variables of interest in future ecological studies.Spatially continuousα-diversity indices are useful to compare and monitor species trends in space and time,which is valuable for conservation practitioners.展开更多
Peanut (Arachis hypogaea L.) is an important source crop for edible oil and protein. It is important to identify the genetic diversity of peanut genetic resources for cultivar development and evaluation of peanut ac...Peanut (Arachis hypogaea L.) is an important source crop for edible oil and protein. It is important to identify the genetic diversity of peanut genetic resources for cultivar development and evaluation of peanut accessions. Thirty-four SSR markers were used to assess the genetic variation of four sets of twenty-four accessions each from the four botanical varieties of the cultivated peanut. Among the tested accessions, ten to sixteen pairs of SSR primers showed polymorphisms. The maximum differentiation index, which was defined as the degree of genetic differentiation, was as high as 0.992 in the tested accessions. Each accession could be discriminated by a specific set of polymorphic SSR primers, and the intra-variety genetic distance was determined among accessions, with an average of 0.59 in var. fastigiata, 0.46 in var. hypogaea, 0.38 in var. vulgaris, and 0.17 in var. hirsuta. Dendrogrames based on genetic distances were constructed for the four botanical varieties, which revealed the existence of different clusters. It was concluded that there was abundant intra-variety SSR polymorphism, and with more and more SSR markers being developed, the intrinsic genetic diversity would be detected and the development of genetic map and marker-assisted selection for cultivated peanut would be feasible.展开更多
基金Supported by Prefecture-level Science and Technology Program of Hetian Prefecture(202439).
文摘[Objectives]This study was conducted to explore the characteristics of plant diversity of Jiangxia Wetland in Lhasa River basin.[Methods]Based on the survey data of 37 plant community in three types of sample plots of Jiangxia Wetland in the Lhasa River basin,this study analyzed the diversity of plant community in different habitats of Jiangxia Wetland from Pielou evenness,Margalef richness,Simpson and Shannon Wiener diversity indexes of different types and levels.[Results]The Pielou index,Shannon-Wiener index and Simpson diversity index of dry land was higher than those of other plots,while the Margalef species richness index of the ecotone of seasonally flooded and dry land was higher than that of other plots.The Pielou index,Shannon-Wiener index,Simpson diversity index and Margalef species richness index of composite plants were higher than those of other herbaceous plants.The Shannon-Wiener index,Simpson diversity index and Margalef species richness index of hygrophytes were higher than those of other plants,while the Pielou index evenness index of aquatic plants was higher than that of other plants.Annual or perennial herbaceous plants occupied the primary position in the study area,and shrub plants occupied a secondary position,and floating plants took the lowest position.[Conclusions]The results of this study can provide theoretical support or reference basis for the scientific management of comprehensive wetland systems such as wetland ecosystem restoration and plant diversity protection in Jiangxia Wetland.
基金funded by supporting Project No.Qian ke he[2020]1Y71PhD Fund Project No.Zunshi 138[2019]22+2 种基金Education Department of Guizhou Province Scientific Research Project No.Qianjiaohe KY word 2017-023Zunyi City Science and Technology Bureau Project(Zunshike rencai 2020-2Zunshikehe HZ word 2020-15).
文摘The chemical compositions of tea(Camellia sinensis)are affected by numerous factors,such as cultivar,climate,leaf position,and cultivation pattern.However,under the same conditions,the chemical compositions are mainly determined by varieties.Therefore,we investigated the genetic diversity of chemical compositions of tea tree resources in China to screen excellent germplasm resources.Three chemical compositions index(including chlorophyll index,flavonoid index,and anthocyanin index)and the nitrogen balance index of tea leaves were measured in 102 tea germplasms planted in Chinese Tea Plants Improved Variety Germplasm Resources Nursery(CTPIVGRN)by Dualex on April 152019.Results showed that the chlorophyll,flavonoid,and anthocyanin contents and the nitrogen balance index significantly differed between the 102 tea germplasms.The genetic diversity index values were 2.005,2.246,1.599,and 1.838,and the average genetic diversity was 1.922.The 102 tea germplasms can be divided into four categories by cluster analysis under the genetic distance threshold of 11.These results suggest that the genetic diversity of tea germplasm resources in China is rich.This study’s results can serve as a basis for the diversified development and utilization of tea plant.
文摘Habitat pattern change of red-crowned cranes (Grus japonensis) in t he Liaohe Delta between 1988 and 1998 was analyzed with the help of Spatial Dive rsity Index based on remote sensing data and field investigation. The result sho wed that the influence from human activities on the wetland habitat of red-crow ned cranes was prominent with the development of oil and agricultural exploitati on, and the habitat pattern of red-crowned cranes had been obviously changed by the human disturbance during the ten years. The areas with high Spatial Diversi ty values (SD≥0.65) and that with mid-high values (0.5≤SD< 0.65), which const ituted the main part of suitable habitat of red-crowned cranes,had reduced to 9142ha and 5576ha respectively, with the shrinking of natural land cover, such a s reed and Suaeda community. The habitat pattern became more fragmented, which w as caused by roads and wells during oil exploration. It was indicated that the s uitability and quality of habitat for red-crowned cranes in the Liaohe Delta we re degraded in the last decade. The results also showed that diversity index cou ld reflect the habitat suitability of red-crowned cranes quantitatively and des cribe the spatial pattern of the habitat explicitly. This study will provide a s cientific basis for habitat protection of red-crowned cranes and other rare spe cies in wetlands.
文摘The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.
文摘The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A213)。
文摘α-diversity describes species diversity at local scales.The Simpson’s and Shannon-Wiener indices are widely used to characterizeα-diversity based on species abundances within a fixed study site(e.g.,a quadrat or plot).Although such indices provide overall diversity estimates that can be analyzed,their values are not spatially continuous nor applicable in theory to any point within the study region,and thus they cannot be treated as spatial covariates for analyses of other variables.Herein,we extended the Simpson’s and Shannon-Wiener indices to create point estimates ofα-diversity for any location based on spatially explicit species occurrences within different bandwidths(i.e.,radii,with the location of interest as the center).For an arbitrary point in the study region,species occurrences within the circle plotting the bandwidth were weighted according to their distance from the center using a tri-cube kernel function,with occurrences closer to the center having greater weight than more distant ones.These novel kernel-basedα-diversity indices were tested using a tree dataset from a 400 m×400 m study region comprising a 200 m×200 m core region surrounded by a 100-m width buffer zone.Our newly extendedα-diversity indices did not disagree qualitatively with the traditional indices,and the former were slightly lower than the latter by<2%at medium and large band widths.The present work demonstrates the feasibility of using kernel-basedα-diversity indices to estimate diversity at any location in the study region and allows them to be used as quantifiable spatial covariates or predictors for other dependent variables of interest in future ecological studies.Spatially continuousα-diversity indices are useful to compare and monitor species trends in space and time,which is valuable for conservation practitioners.
基金This work was supported by Guangxi Natural Sciences Foundation (No. 0542027) Science and Technology Development Foundation of GXAAS (No. 200301).
文摘Peanut (Arachis hypogaea L.) is an important source crop for edible oil and protein. It is important to identify the genetic diversity of peanut genetic resources for cultivar development and evaluation of peanut accessions. Thirty-four SSR markers were used to assess the genetic variation of four sets of twenty-four accessions each from the four botanical varieties of the cultivated peanut. Among the tested accessions, ten to sixteen pairs of SSR primers showed polymorphisms. The maximum differentiation index, which was defined as the degree of genetic differentiation, was as high as 0.992 in the tested accessions. Each accession could be discriminated by a specific set of polymorphic SSR primers, and the intra-variety genetic distance was determined among accessions, with an average of 0.59 in var. fastigiata, 0.46 in var. hypogaea, 0.38 in var. vulgaris, and 0.17 in var. hirsuta. Dendrogrames based on genetic distances were constructed for the four botanical varieties, which revealed the existence of different clusters. It was concluded that there was abundant intra-variety SSR polymorphism, and with more and more SSR markers being developed, the intrinsic genetic diversity would be detected and the development of genetic map and marker-assisted selection for cultivated peanut would be feasible.