A water leakage on the surface of heat transfer tube in a steam generator of sodium-cooled fast reactor causes SWR (sodium-water reaction). The SWR damages the leak surface and gives rise to the leak enlargement. Mo...A water leakage on the surface of heat transfer tube in a steam generator of sodium-cooled fast reactor causes SWR (sodium-water reaction). The SWR damages the leak surface and gives rise to the leak enlargement. Most of initial leakage starts from micro leak (less than 0.5 g/s). However, the leak rate increases more than two orders of magnitude and the resultant leak damages surrounding heat transfer tubes and it brings secondary failure of the heat transfer tube. Evaluation of the leak enlargement is necessary to assess the leak rate increase, so that evaluate the possibility of secondary failure. In this study, a simulant experiment, which uses neutralization reaction, is proposed to reproduce the leak enlargement. To examine the feasibility of the experiment, numerical simulations are carried out. From the result, a funnel-shaped nozzle enlargement is observed and the shape similar to the shape of the enlarged nozzle from the SWAT (sodium-water reaction test loop) experiment.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges a...With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.展开更多
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniqu...The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.展开更多
It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation const...It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.展开更多
Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivat...Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.展开更多
A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:...A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.展开更多
Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weig...Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.展开更多
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o...A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.展开更多
Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deforma...Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.展开更多
In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the...In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the quenching medium. To demonstrate the effectiveness of the proposed new quenching technology, both numerical analysis and experimental study were performed. The new quenching technology was analyzed using finite element method. The combined effects of the temperature, stress and microstructure fields were investigated considering nonlinear material properties. Finally, an experimental study was performed to verify the effectiveness of the proposed new quenching technology. The numerical results show that internal stress is affected by both thermal stress and transformation stress. In addition, the direction of the internal stress is changed several times due to thermal interaction and microstructure evolution during the quenching process. The experimental results show that the proposed new quenching technology significantly improves the mechanical properties and microstructures of the cam. The tensile strength, the impact resistance and the hardness value of the cam by the proposed new quenching technology are improved by 4.3%, 8.9% and 3.5% compared with those by the traditional quenching technology. Moreover, the residual stress and cam shape deformation are reduced by 40.0% and 48.9% respectively for the cam manufactured by the new quenching technology.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three light...Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.展开更多
In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out...In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.展开更多
An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We...An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.展开更多
Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different phys...Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup compone...Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.展开更多
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the p...Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.展开更多
文摘A water leakage on the surface of heat transfer tube in a steam generator of sodium-cooled fast reactor causes SWR (sodium-water reaction). The SWR damages the leak surface and gives rise to the leak enlargement. Most of initial leakage starts from micro leak (less than 0.5 g/s). However, the leak rate increases more than two orders of magnitude and the resultant leak damages surrounding heat transfer tubes and it brings secondary failure of the heat transfer tube. Evaluation of the leak enlargement is necessary to assess the leak rate increase, so that evaluate the possibility of secondary failure. In this study, a simulant experiment, which uses neutralization reaction, is proposed to reproduce the leak enlargement. To examine the feasibility of the experiment, numerical simulations are carried out. From the result, a funnel-shaped nozzle enlargement is observed and the shape similar to the shape of the enlarged nozzle from the SWAT (sodium-water reaction test loop) experiment.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金The 2024 Hankou University School-Level Teaching Reform Research Project“Research on the Application of Virtual Simulation Experimental Teaching in the Course of Securities Investment”(Project number:2024JY43)。
文摘With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
基金supported by the National Natural Science Foundation of China(No.50974029)the Doctoral Program of the Ministry of Education(No.20070220001)Province Natural Science Foundation of Heilongjiang of China(No.E200816)
文摘The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.
基金the National Natural Science Foundation of China (40201009 and 90201007)Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
文摘It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.
基金Supported by the Major State Basic Research Development Program Fund (2010CB226801) the National Natural Science Foundation of China (50704034) the State Key Laboratory of Coal Resources and Safe Mining Open Research Fund (SKLCRSM11KFB08)
文摘Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.
基金the National Science Foundation.USA.(NSF Grant EAR 02-10820)the National Natural ScienceFoundation of China(NSFC Grant No.40173031)+1 种基金the International Cooperative Research Foundation of NSFC(Grant No.2002-40210104086) the Ph.D.Base Foundation of the Ministry of Education of China(Grant No.20020284036).
文摘A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.
基金supported financially by the National Key R&D Program of China(No.2017YFC0307600)the Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0207)+3 种基金the National Natural Science Foundation of China(No.41906067)the China Postdoctoral Science Foundation(No.2018M632634)the Natural Science Foundation of Shandong Province of China(No.ZR2019BD051)the Marine Geological Survey Program(Nos.DD20190221 and DD20190231)。
文摘Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.
文摘A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.
基金National Natural Science Foundation of PRC(50374055)Shaanxi Key Lab of Ground Control(02JS43)
文摘Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.
基金Project(50875268) supported by the National Natural Science Foundation of China Project(CSTC2008AB3057) supported by Foundation of Chongqing Science and Technology Commission, China+1 种基金 Project(108107) supported by the Key Project of Ministry of Education of China Project(50925518) supported by the National Science Fund for Distinguished Young Scholars
文摘In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the quenching medium. To demonstrate the effectiveness of the proposed new quenching technology, both numerical analysis and experimental study were performed. The new quenching technology was analyzed using finite element method. The combined effects of the temperature, stress and microstructure fields were investigated considering nonlinear material properties. Finally, an experimental study was performed to verify the effectiveness of the proposed new quenching technology. The numerical results show that internal stress is affected by both thermal stress and transformation stress. In addition, the direction of the internal stress is changed several times due to thermal interaction and microstructure evolution during the quenching process. The experimental results show that the proposed new quenching technology significantly improves the mechanical properties and microstructures of the cam. The tensile strength, the impact resistance and the hardness value of the cam by the proposed new quenching technology are improved by 4.3%, 8.9% and 3.5% compared with those by the traditional quenching technology. Moreover, the residual stress and cam shape deformation are reduced by 40.0% and 48.9% respectively for the cam manufactured by the new quenching technology.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.
基金Funded by Key Laboratory of Ministry of Education for Conveyance and Equipment,East China Jiaotong University(No. 09JD09)
文摘Counter beam lighting was introduced as well as transverse symmetrical lighting and longitudinal symmetrical lighting.Simulation experiments were carried out by using DIAlux lighting software for the above three lighting methods.The results show that counter beam lighting is more reasonable to be adopted in the tunnel entrance zone because its threshold increment of disability glare is greater.Counter beam lighting can improve the background luminance of the obstacles and lighting efficiency compared with transverse symmetrical lighting and longitudinal symmetrical lighting.Therefore,tunnel lighting energy-saving can be achieved by reducing the road luminance demands and luminaries power.Longitudinal symmetrical lighting is conducive to the large luminaries spacing in the tunnel internal zone;so power consumption can be reduced by decreasing the number of luminaries used.Tunnel walls are unsuitable to pave with smooth or bright material.Installation height of the luminaries has less effect on counter beam lighting.
基金co-funded by the National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05009003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX06013A)the Chinese Scholarship Council (No.201406450019)
文摘In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.
基金Supported by the National Key Research&Development Plan of China(Nos.2016YFC1401703,2016YFC1401702,2018YFC0309803)the National Natural Science Foundation of China(Nos.41506002,41676010,41476011,41676015,41606026)+1 种基金the Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2019ZR0)the Guangzhou Science and Technology Foundation(No.201804010133)。
文摘An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.
基金National Natural Science Foundation of China (No. 40275004)State Key Laboratory of Atmosphere Physics and Chemistry
文摘Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574019,61674018 and 61674020the Fund of State Key Laboratory of Information Photonics and Optical Communicationsthe Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20130005130001
文摘Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results.
基金financially supported by the State Oceanic Administration of China(Grant No.GHME2011CL01)the Program of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1102)
文摘Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.