To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupte...To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.展开更多
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the perform...Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.展开更多
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature...Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aim...This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.展开更多
Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(S...Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(SA)is applied due to the effectiveness of locating solutions that are close to ideal and to challenge large-scale combinatorial optimization for Permanent Magnet Synchronous Machine(PMSM).The parameters of direct torque controllers(DTC)for the drive are automatically adjusted by the optimization algorithm.Advantages of the PI-Fuzzy-SA algorithm are retained when used together.It also improves the rate of system convergence.Speed response improvement and har-monic reduction is achieved with SA-based DTC for PMSM.This mechanism is known to be faster than other algorithms.Also,it is observed that as compared to other algorithms,the projected algorithm yields a reduced total harmonic distor-tion.As a result of the employment of Space Vector Modulation(SVM)techni-que,the system is resistant to changes in motor specifications and load torque.Through MATLAB&Simulink simulation,the experiment is done and the per-formance is calculated for the controller.展开更多
Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine,for example,traditional Chinese medicine(TCM),Japanese traditional herbal me...Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine,for example,traditional Chinese medicine(TCM),Japanese traditional herbal medicine,and traditional Korean medicine(TKM).The diagnosis procedure is mainly based on the expert’s knowledge depending upon the visual inspec-tion comprising color,substance,coating,form,and motion of the tongue.But conventional tongue diagnosis has limitations since the procedure is inconsistent and subjective.Therefore,computer-aided tongue analyses have a greater potential to present objective and more consistent health assess-ments.This manuscript introduces a novel Simulated Annealing with Transfer Learning based Tongue Image Analysis for Disease Diagnosis(SADTL-TIADD)model.The presented SADTL-TIADD model initially pre-processes the tongue image to improve the quality.Next,the presented SADTL-TIADD technique employed an EfficientNet-based feature extractor to generate useful feature vectors.In turn,the SA with the ELM model enhances classification efficiency for disease detection and classification.The design of SA-based parameter tuning for heart disease diagnosis shows the novelty of the work.A wide-ranging set of simulations was performed to ensure the improved performance of the SADTL-TIADD algorithm.The experimental outcomes highlighted the superior of the presented SADTL-TIADD system over the compared methods with maximum accuracy of 99.30%.展开更多
An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters ...An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.展开更多
In order to enable quality-aware web services selection in the process of service composition,this paper first describes the non-functional requirements of service consumers and the quality of elementary service or co...In order to enable quality-aware web services selection in the process of service composition,this paper first describes the non-functional requirements of service consumers and the quality of elementary service or composite service as a quality vector,and then models the QoS(quality of service)-aware composition as a multiple criteria optimization problem in extending directed graph.A novel simulated annealing algorithm for QoS-aware web services composition is presented.A normalizing for composite service QoS values is made,and a secondary iterative optimization is used in the algorithm.Experimental results show that the simulated annealing algorithm can satisfy the multiple criteria and global QoS requirements of service consumers.The algorithm produces near optimum solution with much less computation cost.展开更多
This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic ...This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermedi...This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.展开更多
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i...In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.展开更多
In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a le...In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o...This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.展开更多
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o...At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.展开更多
In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a N...In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.展开更多
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it...Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.展开更多
基金support provided by the National Natural Science Foundation of China(Grant No.52362055)the Science and Technology Plan Project of Guangxi Zhuang Autonomous Region(Grant No.2021AC19334)Guangxi Science and Technology Major Program(Grant No.AA23062053).
文摘To provide a much more resilient transport scheme for tractor and trailer transportation systems,this paper explores the generation method of tractor and trailer transport schemes considering the influence of disrupted events.Three states of tractors including towing loaded trailers,towing empty trailers,and idle driving are taken into account.Based on the disruption management theory,a scheduling model is constructed to minimize the total deviation cost including transportation time,transportation path,and number of used vehicles under the three states of tractors.A heuristics based on the contract net and simulated annealing algorithm is designed to solve the proposed model.Through comparative analysis of examples with different numbers of newly added transportation tasks and different types of road networks,the performance of the contract net algorithm in terms of deviations in idle driving paths,empty trailer paths,loaded trailer paths,time,number of used vehicles,and total deviation cost are analyzed.The results demonstrate the effectiveness of the model and algorithm,highlighting the superiority of the disruption management model and the contract net annealing algorithm.The study provides a reference for handling unexpected events in the tractor and trailer transportation industry.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
文摘Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin City(19JCYBJC20300)。
文摘Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金the Shandong Province Key Research and Development Program under Grant No.2021SFGC0601.
文摘This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.
文摘Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(SA)is applied due to the effectiveness of locating solutions that are close to ideal and to challenge large-scale combinatorial optimization for Permanent Magnet Synchronous Machine(PMSM).The parameters of direct torque controllers(DTC)for the drive are automatically adjusted by the optimization algorithm.Advantages of the PI-Fuzzy-SA algorithm are retained when used together.It also improves the rate of system convergence.Speed response improvement and har-monic reduction is achieved with SA-based DTC for PMSM.This mechanism is known to be faster than other algorithms.Also,it is observed that as compared to other algorithms,the projected algorithm yields a reduced total harmonic distor-tion.As a result of the employment of Space Vector Modulation(SVM)techni-que,the system is resistant to changes in motor specifications and load torque.Through MATLAB&Simulink simulation,the experiment is done and the per-formance is calculated for the controller.
文摘Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine,for example,traditional Chinese medicine(TCM),Japanese traditional herbal medicine,and traditional Korean medicine(TKM).The diagnosis procedure is mainly based on the expert’s knowledge depending upon the visual inspec-tion comprising color,substance,coating,form,and motion of the tongue.But conventional tongue diagnosis has limitations since the procedure is inconsistent and subjective.Therefore,computer-aided tongue analyses have a greater potential to present objective and more consistent health assess-ments.This manuscript introduces a novel Simulated Annealing with Transfer Learning based Tongue Image Analysis for Disease Diagnosis(SADTL-TIADD)model.The presented SADTL-TIADD model initially pre-processes the tongue image to improve the quality.Next,the presented SADTL-TIADD technique employed an EfficientNet-based feature extractor to generate useful feature vectors.In turn,the SA with the ELM model enhances classification efficiency for disease detection and classification.The design of SA-based parameter tuning for heart disease diagnosis shows the novelty of the work.A wide-ranging set of simulations was performed to ensure the improved performance of the SADTL-TIADD algorithm.The experimental outcomes highlighted the superior of the presented SADTL-TIADD system over the compared methods with maximum accuracy of 99.30%.
文摘An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively.
基金The National Natural Science Foundation of China(No.60773217)Free Exploration Project(985 Project of Renmin University of China)(No.21361231)
文摘In order to enable quality-aware web services selection in the process of service composition,this paper first describes the non-functional requirements of service consumers and the quality of elementary service or composite service as a quality vector,and then models the QoS(quality of service)-aware composition as a multiple criteria optimization problem in extending directed graph.A novel simulated annealing algorithm for QoS-aware web services composition is presented.A normalizing for composite service QoS values is made,and a secondary iterative optimization is used in the algorithm.Experimental results show that the simulated annealing algorithm can satisfy the multiple criteria and global QoS requirements of service consumers.The algorithm produces near optimum solution with much less computation cost.
文摘This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
文摘This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.
基金Supported by the National Basic ResearchProgramof China (973 Program2003CB314804)
文摘In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
基金the Natural Science Foundation of Shandong Province (Y2006A12)the Scientific ResearchDevelopment Project of Shandong Provincial Education Department(J06P01)the Doctoral Foundation of University of Jinan(B0633).
文摘In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金Project supported by the National Natural Science Foundation of China (Grant No.50375023)
文摘This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.
基金supported by the National Science Fund of China under Grants 61603034China Postdoctoral Science Foundation under Grant 2019M653870XB+1 种基金Beijing Municipal Natural Science Foundation (3182027)Fundamental Research Funds for the Central Universities,China,FRF-GF-17-B44,and XJS191315
文摘At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.
基金supported by the Major National Science & Technology Specific Project of China under Grants No.2010ZX03002-007-02,No.2009ZX03002-002,No.2010ZX03002-002-03
文摘In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.
基金Supported by School of Engineering, Napier University, United Kingdom, and partially supported by the National Natural Science Foundation of China (No.60273093).
文摘Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.