The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also ...The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.展开更多
We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures,...We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a lO0-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 A, 0.63 A, 0.52 A, 1.1 A and 0.78 A. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs.展开更多
By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that i...By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.展开更多
The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent e...The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions.展开更多
This paper uses Jin Xing( 2004,2005) and Ma Qiang's( 2003) real-time time-domain methods to simulate and compare both the broadband strong motion acceleration and velocity records measured at the same stations in ...This paper uses Jin Xing( 2004,2005) and Ma Qiang's( 2003) real-time time-domain methods to simulate and compare both the broadband strong motion acceleration and velocity records measured at the same stations in the Liaoning Telemetered Digital Seismic Network. The results show that we can get actual velocity and displacement time histories by simulating broadband acceleration records. The acceleration and displacement time histories also may be obtained by simulating broadband velocity records. This indicates that strong motion observations and seismometer observations can be substituted for each other in a certain range.展开更多
We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with ...We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with a constant-number Monte Carlo method for simulating the reproductive fitness and the statistical characteristics of growing cell populations.To benchmark accuracy and performance,we compare simulation results with those generated from a previously validated population dynamics algorithm.The comparison demonstrates that the accelerated method accurately simulates population dynamics with significant reductions in runtime under commonly invoked steady-state and symmetric cell division assumptions.Considering the increasing complexity of cell population models,the method is an important addition to the arsenal of existing algorithms for simulating cellular and population dynamics that enables efficient,coarse-grained exploration of parameter space.展开更多
The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerate...The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles(RFQ) operating in CW mode.To test the feasibility of this physical design,a new Fortran code for RFQ beam dynamics study,which is space charge dominated,was developed.This program is based on Particle-In-Cell(PIC) technique in the time domain.Using the RFQ structure designed for the CADS project,the beam dynamics behavior is performed.The well-known simulation code TRACK is used for benchmarks.The results given by these two codes show good agreements.Numerical techniques as well as the results of beam dynamics studies are presented in this paper.展开更多
文摘The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.
基金Supported by the National Natural Science Foundation of China under Grant Nos 31200545,11274206 and 11574184
文摘We report the results of protein folding (219M, C34, N36, 2KES, 2KHK) by the method of accelerated molecular dynamics (aMD) at room temperature with the implicit solvent model. Starting from the linear structures, these proteins successfully fold to the native structure in a lO0-ns aMD simulation. In contrast, they are failed under the traditional MD simulation in the same simulation time. Then we find that the lowest root mean square deviations of helix structures from the native structures are 0.36 A, 0.63 A, 0.52 A, 1.1 A and 0.78 A. What is more, native contacts, cluster and free energy analyses show that the results of the aMD method are in accordance with the experiment very well. All analyses show that the aMD can accelerate the simulation process, thus we may apply it to the field of computer aided drug designs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374209,11374210,and 11774227)the Major State Basic Research Development Program of China(Grant No.2015CB859700)
文摘By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.
基金Project supported by the Shanghai Natural Special Foundation for Outstanding Young Teachers in University,China(Grant No.yyy10043)
文摘The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions.
基金funded by the postgraduate fund of Earthquake Administration of Liaoning Province,China(LNDZBSJJ002)
文摘This paper uses Jin Xing( 2004,2005) and Ma Qiang's( 2003) real-time time-domain methods to simulate and compare both the broadband strong motion acceleration and velocity records measured at the same stations in the Liaoning Telemetered Digital Seismic Network. The results show that we can get actual velocity and displacement time histories by simulating broadband acceleration records. The acceleration and displacement time histories also may be obtained by simulating broadband velocity records. This indicates that strong motion observations and seismometer observations can be substituted for each other in a certain range.
基金supported financially by the National Science and Engineering Research Council of Canada(NSERC).
文摘We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with a constant-number Monte Carlo method for simulating the reproductive fitness and the statistical characteristics of growing cell populations.To benchmark accuracy and performance,we compare simulation results with those generated from a previously validated population dynamics algorithm.The comparison demonstrates that the accelerated method accurately simulates population dynamics with significant reductions in runtime under commonly invoked steady-state and symmetric cell division assumptions.Considering the increasing complexity of cell population models,the method is an important addition to the arsenal of existing algorithms for simulating cellular and population dynamics that enables efficient,coarse-grained exploration of parameter space.
基金Supported by National Natural Science Foundation of China(11079001,91026001)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA03030100)
文摘The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles(RFQ) operating in CW mode.To test the feasibility of this physical design,a new Fortran code for RFQ beam dynamics study,which is space charge dominated,was developed.This program is based on Particle-In-Cell(PIC) technique in the time domain.Using the RFQ structure designed for the CADS project,the beam dynamics behavior is performed.The well-known simulation code TRACK is used for benchmarks.The results given by these two codes show good agreements.Numerical techniques as well as the results of beam dynamics studies are presented in this paper.