As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach sy...In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.展开更多
Optimizing train movement has a great significance for railway traffic. In this paper, based on the optimal velocity car-following model, we propose a new simulation model for optimizing train movement in railway traf...Optimizing train movement has a great significance for railway traffic. In this paper, based on the optimal velocity car-following model, we propose a new simulation model for optimizing train movement in railway traffic. Here a kind of single-track railway is considered. Our aim is to reduce the energy consumption of train movement and ensure the train being on time by controlling the velocity curve of train movement. The simulation results indicate that the proposed model is effective for optimizing train movement. In addition, some major characteristics of train movement can be well captured. This method provides a new way to optimize train movement in railway traffic.展开更多
Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to t...Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.展开更多
We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for alloca...We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.展开更多
With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, whi...With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, which is a long-distance water delivery system constructed for draw- ing water from the Zhangjiuhe River to Kunming city. Taking SIMULINK software as simulating plat-form, the technique established a visual dynamic simulation model for the system. The simulation procedure of the system was simplified,and the efficiency of modeling was also enhanced according to the modularization and reutilization of the simulation program. Furthermore, a self-optimization model was presented. Based on the digital simulation models, the on line controlled optimization link was added, and the input data can be continually optimized according to the feedback information of simulating output. The system was thus optimized automatically. Built upon MATLAB software, simulation optimization of the Zhangjiuhe Diversion Project was achieved, which provides a new way for the research of optimal operation of WDS.展开更多
With the advance of new computational technology,stochastic systems simulation and optimization has become increasingly a popular subject in both academic research and industrial applications.This paper presents some ...With the advance of new computational technology,stochastic systems simulation and optimization has become increasingly a popular subject in both academic research and industrial applications.This paper presents some of recent developments about the problem of optimizing a performance function from a simulation model.We begin by classifying different types of problems and then provide an overview of the major approaches,followed by a more in-depth presentation of two specific areas:optimal computing budget allocation and the nested partitions method.展开更多
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand ...Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand energy transfers between two phases were calculated with the interface transfer submodels by using the computational fluid dynamics software CFX. Results showed that compared with the single-phase flow without considering the boiling heat transfer,the sub-cooled boiling heat transfer of the cylinder head was greatly increased. According to the results of the numerical simulation,an optimized structure of the water jacket was proposed. Finally,temperature and velocity of coolant,diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.展开更多
Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient...Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.展开更多
As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous in...As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation efficiency of inner channels.An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube.The three-dimensional computational fluid dynamics(CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube.A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied.The relationship between permeation efficiency and channel locations,and the method for increasing the permeation efficiency of inner channels were proposed.Some novel multichannel membrane configurations with more permeate side channels were put forward and evaluated.展开更多
A new vapor distributor based on the Coanda effect is added to the Dividing Wall column(DWC),and the multiphase flow simulation is performed using ANSYS Fluent by this model.The results show that with the addition of ...A new vapor distributor based on the Coanda effect is added to the Dividing Wall column(DWC),and the multiphase flow simulation is performed using ANSYS Fluent by this model.The results show that with the addition of the liquid phase,the new vapor distributor still follows the Coanda effect.Hereby,the vapor is ejected from the slits of the distributor to take away the surrounding vapor,and a negative pressure is formed under the distributor,so as to achieve the purpose of regulating Rv.Analogously to the working principle of vapor distributor,a certain amount of vapor is drawn out from a position of prefractionator,which is equivalent to the vapor ejected by the distributor.The same amount of vapor is fed into the main column,which corresponds to the gas phase at the inlet of the distributor.The Rv is adjusted by changing the speed of the input or output vapor.Simulation results show that adding this control mechanism on the basis of temperature or concentration control structure can better achieve the effect of vapor distribution.展开更多
In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorit...In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorithm consists of two stages. The first stage is using GA (genetic algorithm) assisted by a surrogate model to select an estimated good enough subset of solutions. The second stage is to identify the best solution among the solutions obtained from stage one using optimal computing budget allocation technique. We have tested the proposed algorithm on a bicycle sharing network and compared the test results with those obtained by the GA with exact model. The test results demonstrate that the proposed algorithm can obtain a good enough solution within reasonable computing time and outperforms the comparing method.展开更多
To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas ...To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.展开更多
A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a ...A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem.展开更多
Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improv...Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.展开更多
In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the...In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the subsiding area. In this paper, taking Zhangfushan iron mine as an example, the ore body and the general layout are focused on the safety of backflling of mined-out area. Then, we use the ANSYS software to construct a three-dimensional(3D) model for the mining area in the Zhangfushan iron mine. According to the simulation results of the initial mining stages, the ore body is stoped step by step as suggested in the design. The stability of the backflling is back analyzed based on the monitored displacements, considering the stress distribution to optimize the stoping sequence. The simulations show that a reasonable stoping sequence can minimize the concentration of high compressive stress and ensure the safety of stoping of the ore body.展开更多
The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simu...The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti...In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.展开更多
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
基金Supported by the National Natural Science Foundation of China(70272002) .
文摘In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110502)the National Natural Science Foundation of China (Grant No. 71271022)
文摘Optimizing train movement has a great significance for railway traffic. In this paper, based on the optimal velocity car-following model, we propose a new simulation model for optimizing train movement in railway traffic. Here a kind of single-track railway is considered. Our aim is to reduce the energy consumption of train movement and ensure the train being on time by controlling the velocity curve of train movement. The simulation results indicate that the proposed model is effective for optimizing train movement. In addition, some major characteristics of train movement can be well captured. This method provides a new way to optimize train movement in railway traffic.
文摘Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.
文摘We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.
基金National Natural Science Foundation of China(No.50179032)Natural Science Foundation of Tianjin(No.000345)
文摘With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, which is a long-distance water delivery system constructed for draw- ing water from the Zhangjiuhe River to Kunming city. Taking SIMULINK software as simulating plat-form, the technique established a visual dynamic simulation model for the system. The simulation procedure of the system was simplified,and the efficiency of modeling was also enhanced according to the modularization and reutilization of the simulation program. Furthermore, a self-optimization model was presented. Based on the digital simulation models, the on line controlled optimization link was added, and the input data can be continually optimized according to the feedback information of simulating output. The system was thus optimized automatically. Built upon MATLAB software, simulation optimization of the Zhangjiuhe Diversion Project was achieved, which provides a new way for the research of optimal operation of WDS.
基金Some of this material was presented at the 2008 INFORMS Annual Meeting and 2008 Winter Simulation Conference[56,57]This work was supported in part by Department of Energy under Award DE-SC0002223NIH under Grant 1R21DK088368-01.
文摘With the advance of new computational technology,stochastic systems simulation and optimization has become increasingly a popular subject in both academic research and industrial applications.This paper presents some of recent developments about the problem of optimizing a performance function from a simulation model.We begin by classifying different types of problems and then provide an overview of the major approaches,followed by a more in-depth presentation of two specific areas:optimal computing budget allocation and the nested partitions method.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金Supported by the National Key Basic Research Program of China(1030021210710)
文摘Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied.The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass,momentumand energy transfers between two phases were calculated with the interface transfer submodels by using the computational fluid dynamics software CFX. Results showed that compared with the single-phase flow without considering the boiling heat transfer,the sub-cooled boiling heat transfer of the cylinder head was greatly increased. According to the results of the numerical simulation,an optimized structure of the water jacket was proposed. Finally,temperature and velocity of coolant,diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2002AA411030)National Defense Foundation Scientific Research of China (Grant No. d2520061124)
文摘Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Natural Science Foundation of China(21490584,21476236)the National High Technology Research and Development Program of China(2012AA03A606)
文摘As a major configuration of membrane elements,multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation.Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation efficiency of inner channels.An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube.The three-dimensional computational fluid dynamics(CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube.A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied.The relationship between permeation efficiency and channel locations,and the method for increasing the permeation efficiency of inner channels were proposed.Some novel multichannel membrane configurations with more permeate side channels were put forward and evaluated.
基金This work was supported by the National Natural Science Foundation of China(21878066).
文摘A new vapor distributor based on the Coanda effect is added to the Dividing Wall column(DWC),and the multiphase flow simulation is performed using ANSYS Fluent by this model.The results show that with the addition of the liquid phase,the new vapor distributor still follows the Coanda effect.Hereby,the vapor is ejected from the slits of the distributor to take away the surrounding vapor,and a negative pressure is formed under the distributor,so as to achieve the purpose of regulating Rv.Analogously to the working principle of vapor distributor,a certain amount of vapor is drawn out from a position of prefractionator,which is equivalent to the vapor ejected by the distributor.The same amount of vapor is fed into the main column,which corresponds to the gas phase at the inlet of the distributor.The Rv is adjusted by changing the speed of the input or output vapor.Simulation results show that adding this control mechanism on the basis of temperature or concentration control structure can better achieve the effect of vapor distribution.
文摘In this paper, we propose an ordinal optimization based simulation optimization algorithm to determine a target distribution of bicycles for a bicycle sharing network to minimize an expected cost. The proposed algorithm consists of two stages. The first stage is using GA (genetic algorithm) assisted by a surrogate model to select an estimated good enough subset of solutions. The second stage is to identify the best solution among the solutions obtained from stage one using optimal computing budget allocation technique. We have tested the proposed algorithm on a bicycle sharing network and compared the test results with those obtained by the GA with exact model. The test results demonstrate that the proposed algorithm can obtain a good enough solution within reasonable computing time and outperforms the comparing method.
基金Supported by the National Key R&D Program of China(2017YFB0602500)
文摘To optimize industrial Fischer-Tropsch (IT) synthesis with the slurry bubble column reactor (SBCR) and iron- based catalyst, a comprehensive process model for IT synthesis that includes a detailed SBCR model, gas liquid separation model, simplified CO2 removal model and tail gas cycle model was developed. An effective iteration algorithm was proposed to solve this process model, and the model was validated by industrial demonstration experiments data (SBCR with 5.8 m diameter and 30 m height), with a maximum relative error 〈 10% for predicting the SBCR performances. Subsequently, the proposed model was adopted to optimize the industrial SBCR performances simultaneously considering process and reactor parameters variations. The results show that C5+yield increases as catalyst loading increases within 10-70 ton and syngas H2/CO value decreases within 1.3-1.6, but it doesn't increase obviously when the catalyst loading exceeds 45 ton (about 15 wt% concentration). Higher catalyst loading will result in higher difficulty for wax/catalyst separation and higher catalyst cost. There- fore, the catalyst loading (45 ton) is recommended for the industrial demonstration SBCR operation at syngas H2/ CO = 1.3, and the C5 + yield is about 402 ton" per day, which has an about 16% increase than the industrial dem- onstration run result.
基金This project is supported by National Natural Science Foundation of China (No.70071017).
文摘A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201305030the Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120132130001
文摘Fishery-independent surveys are often used for collecting high quality biological and ecological data to support fisheries management. A careful optimization of fishery-independent survey design is necessary to improve the precision of survey estimates with cost-effective sampling efforts. We developed a simulation approach to evaluate and optimize the stratification scheme for a fishery-independent survey with multiple goals including estimation of abundance indices of individual species and species diversity indices. We compared the performances of the sampling designs with different stratification schemes for different goals over different months. Gains in precision of survey estimates from the stratification schemes were acquired compared to simple random sampling design for most indices. The stratification scheme with five strata performed the best. This study showed that the loss of precision of survey estimates due to the reduction of sampling efforts could be compensated by improved stratification schemes, which would reduce the cost and negative impacts of survey trawling on those species with low abundance in the fishery-independent survey. This study also suggests that optimization of a survey design differed with different survey objectives. A post-survey analysis can improve the stratification scheme of fishery-independent survey designs.
文摘In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the subsiding area. In this paper, taking Zhangfushan iron mine as an example, the ore body and the general layout are focused on the safety of backflling of mined-out area. Then, we use the ANSYS software to construct a three-dimensional(3D) model for the mining area in the Zhangfushan iron mine. According to the simulation results of the initial mining stages, the ore body is stoped step by step as suggested in the design. The stability of the backflling is back analyzed based on the monitored displacements, considering the stress distribution to optimize the stoping sequence. The simulations show that a reasonable stoping sequence can minimize the concentration of high compressive stress and ensure the safety of stoping of the ore body.
基金supported by the National Natural Science Foundation of China (No.51404018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-15-008A3)
文摘The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金supported by the National Natural Science Foundation of China(grant number 21476261)the Key Research and Development Plan Project of Shandong Province(grant number 2015GGX107004)
文摘In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.