期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于SUMO的单点交叉口通行能力影响因素探究 被引量:1
1
作者 张军 张建祥 +1 位作者 卞云豪 刘克非 《邵阳学院学报(自然科学版)》 2023年第4期1-7,共7页
随着城市的快速发展,如何提高单点交叉口的通行能力和缓解城市交通拥堵是智慧城市亟待解决的热点问题。为了探究交叉口的通行能力分别与车辆速度、加速度、绿信比和拓宽车道长度等因素的影响关系,选用城市交通仿真(simulation of urban ... 随着城市的快速发展,如何提高单点交叉口的通行能力和缓解城市交通拥堵是智慧城市亟待解决的热点问题。为了探究交叉口的通行能力分别与车辆速度、加速度、绿信比和拓宽车道长度等因素的影响关系,选用城市交通仿真(simulation of urban mobility,SUMO)。搭建城市典型道路交叉口模型,采用控制变量法分别设置模型中的一些几何参数和交通流量。通过传感器检测经过的车辆数量,得出不同因素影响下的交叉口通行能力。结果表明,当车辆行驶速度由30 km/h提高到80 km/h,车辆起步加速度由1.8 m/s^(2)提高到3.4 m/s^(2),相位的绿信比由0.2提高到0.45,拓宽车道长度由50 m提高到400 m时,交叉口通行能力分别提高了7.2%、3.5%、64.0%、4.7%。因此,提高车辆的行驶速度、加速度,增加绿信比和拓宽车道的长度均能有效提高交叉口的通行能力,有助于缓解交通拥堵,为实际生活中交叉口的改进提供理论依据。 展开更多
关键词 交叉口 通行能力 城市交通仿真 绿信比
下载PDF
基于SUMO的路由协议仿真研究 被引量:5
2
作者 苗晓锋 罗志辉 洪亮 《计算机工程》 CAS CSCD 北大核心 2011年第1期107-109,共3页
利用TIGER数据库,构建一个实际道路地图作为仿真场景,借助SUMO交通仿真器和NS2网络仿真平台,评估ADOV、DSR、DSDR 3种路由协议在城市场景车载自组网(VANET)中的适用性。实验结果表明,上述3种协议在城市VANET环境下,存在分组传输成功率... 利用TIGER数据库,构建一个实际道路地图作为仿真场景,借助SUMO交通仿真器和NS2网络仿真平台,评估ADOV、DSR、DSDR 3种路由协议在城市场景车载自组网(VANET)中的适用性。实验结果表明,上述3种协议在城市VANET环境下,存在分组传输成功率低、归一化路由负载高、平均端到端延时大的缺点,难以满足现有城市VANET的通信需求,需要开发新的路由协议。 展开更多
关键词 车载自组网 移动自组网路由协议 sumo交通仿真器 tiger数据库
下载PDF
基于最优碳排放的超大型机场交通组织仿真分析
3
作者 杨申琳 王鹏 +3 位作者 陆春雷 刘冰冰 郝晓丽 荆林朋 《市政技术》 2023年第2期65-72,共8页
对双碳目标下的超大型机场多航站楼进场交通组织方案进行了优选,采用理论建模与软件仿真相结合的方式,对机场进场车辆的到达、停车、离开等行为的碳排放进行了建模,以现状到达车辆数据对仿真模型进行了标定,确定了碳排放最优情况下的机... 对双碳目标下的超大型机场多航站楼进场交通组织方案进行了优选,采用理论建模与软件仿真相结合的方式,对机场进场车辆的到达、停车、离开等行为的碳排放进行了建模,以现状到达车辆数据对仿真模型进行了标定,确定了碳排放最优情况下的机场进场交通组织优选方案;结合车辆吞吐量与车流特征,利用SUMO仿真工具软件确定了不同交通组织方式与碳排放量间的相关性,该研究为超大型机场陆侧进场交通组织方案选型提供了依据。 展开更多
关键词 进场交通组织 仿真模型 最优碳排放 车流特征 sumo
下载PDF
Intelligent and Predictive Vehicular Networks
4
作者 Schmidt Shilukobo Chintu Richard Anthony +1 位作者 Maryam Roshanaei Constantinos Ierotheou 《Intelligent Control and Automation》 2014年第2期60-71,共12页
Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and ... Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors. 展开更多
关键词 simulation of urban mobility sumo Duarouter Fully Balanced Multiple-Candidate Shortest Paths (FBMKP) E1 Induction Loop E3 Detector Re-Routing Braess PARADOX traffic CONTROL INTELLIGENT (TraCI) Partially Re-Routed Shortest Path Method traffic Light CONTROL FBMKP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部