期刊文献+
共找到1,275篇文章
< 1 2 64 >
每页显示 20 50 100
Simulation of surface runoff in theWujiang River watershed based on GIS 被引量:2
1
作者 TANG Congguo LIU Congqiang 《Chinese Journal Of Geochemistry》 EI CAS 2007年第3期284-289,共6页
Surface runoff in the Wujiang River watershed was simulated by a GIS-based method using precipitation, hydrology data, and land-use data. The volume of surface runoff is chiefly controlled by climates, topographical c... Surface runoff in the Wujiang River watershed was simulated by a GIS-based method using precipitation, hydrology data, and land-use data. The volume of surface runoff is chiefly controlled by climates, topographical characteristics and types of land use at the watershed. Five subwatersheds that can represent the whole watershed were chosen and their average annual precipitation, average annual surface runoff and current land use were calculated respectively in the grid model of the Wujiang River watershed based on the climate and hydrology data from 1965 to 2000 and the land-use data acquired in the year of 2000. Surface runoff is assumed to be a function of precipitation and land use and the multiple regression tool is used to determine the relationship between surface runoff, precipitation and present land use. Thus, the rainfall-runoff model for each land-use type has been established. When calibrating these models, the results show that the percent errors are all below 7%, which indicates that the accuracy of this simulation is high. 展开更多
关键词 分水岭 表面径流 底流 乌江
下载PDF
Simulation of Runoff in Karst-influenced Lianjiang Watershed Using the SWAT Model 被引量:2
2
作者 Xizhi Wang Zhaoxiong Liang Jun Wang 《地球科学期刊(中英文版)》 2014年第2期85-92,共8页
关键词 SWAT模型 喀斯特流域 月径流量 模拟水流 水文过程 校准周期 农业化学品 敏感性分析
下载PDF
Hybrid Simulation of the Initiation and Runout Characteristics of a Catastrophic Debris Flow 被引量:5
3
作者 CHEN Hong-Xin ZHANG Li-Min +2 位作者 ZHANG Shuai XIANG Bo WANG Xiao-Feng 《Journal of Mountain Science》 SCIE CSCD 2013年第2期219-232,共14页
On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide ... On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide deposits retained in the ravine during the 2008 Wenchuan earthquake. This paper describes a two-dimensional hybrid numerical method that simulates the entire process of the debris flow from initiation to transportation and finally to deposition. The study area is discretized into a grid of square zones. A two dimensional finite difference method is then applied to simulate the rainfall-runoff and debris flow runout processes. The analysis is divided into three steps; namely, rainfall-runoff simulation, mixing water and solid materials, and debris flow runout simulation. The rainfall-runoff simulation is firstly conducted to obtain the cumulative runoff near the location of main source material and at the outlet of the first branch. The water and solid materials are then mixed to create an inflow hydrograph for the debris flow runout simulation. The occurrence time and volume of the debris flow can be estimated in this step. Finally the runout process of the debris flow is simulated. When the yield stress is high, it controls the deposition zone. When the yield stress is medium or low, both yield stress and viscosity influence the deposition zone. The flow velocity is largely influenced by the viscosity. The estimated yield stress by the equation, ty = pghsinO, and the estimated viscosity by the equation established by Bisantino et al. (2010) provide good estimates of the area of the debris flow fan and the distribution of deposition depth. 展开更多
关键词 Debris flow Landslide Rain-inducedlandslide Surface runoff Runout distance Wenchuan earthquake Numerical simulation
下载PDF
A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran 被引量:3
4
作者 Farzbod Amirhossien Faridhossieni Alireza +1 位作者 Javan Kazem Sharifi Mohammadbagher 《American Journal of Climate Change》 2015年第3期203-216,共14页
In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The c... In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF. 展开更多
关键词 HSPF Model Artificial Neural Network (ANN) runoff simulation Balkhichai River WATERSHED
下载PDF
The characteristics of rill development and their effects on runoff and sediment yield under different slope gradients 被引量:11
5
作者 HE Ji-jun SUN Li-ying +2 位作者 GONG Hui-li CAI Qiang-guo JIA Li-juan 《Journal of Mountain Science》 SCIE CSCD 2016年第3期397-404,共8页
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding proce... Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction. 展开更多
关键词 Rill erosion Erosion processes Simulated rainfall runoff Slope gradient
下载PDF
Simulation and prediction of monthly accumulated runoff,based on several neural network models under poor data availability 被引量:1
6
作者 JianPing Qian JianPing Zhao +2 位作者 Yi Liu XinLong Feng DongWei Gui 《Research in Cold and Arid Regions》 CSCD 2018年第6期468-481,共14页
Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multila... Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multilayer perceptron artificial neural network(ANN). However, in runoff areas with relatively low rainfall or a dry climate, more studies are needed. In these areas—of which oasis-plain areas are a particularly good example—the existence and development of runoff depends largely on that which is generated from alpine regions. Quantitative analysis of the uncertainty of runoff simulation under climate change is the key to improving the utilization and management of water resources in arid areas. Therefore, in this context, three kinds of BP feed-forward, three-layer ANNs with similar structure were chosen as models in this paper.Taking the oasis–plain region traverse by the Qira River Basin in Xinjiang, China, as the research area, the monthly accumulated runoff of the Qira River in the next month was simulated and predicted. The results showed that the training precision of a compact wavelet neural network is low; but from the forecasting results, it could be concluded that the training algorithm can better reflect the whole law of samples. The traditional artificial neural network(TANN) model and radial basis-function neural network(RBFNN) model showed higher accuracy in the training and prediction stage. However, the TANN model, more sensitive to the selection of input variables, requires a large number of numerical simulations to determine the appropriate input variables and the number of hidden-layer neurons. Hence, The RBFNN model is more suitable for the study of such problems. And it can be extended to other similar research arid-oasis areas on the southern edge of the Kunlun Mountains and provides a reference for sustainable water-resource management of arid-oasis areas. 展开更多
关键词 OASIS artificial neural network radial basis function wavelet function runoff simulation
下载PDF
Study on rain-runoff process in the peripheral mountainous area of the Sichuan Basin 被引量:2
7
作者 FU Bin WANG Yu-kuan +2 位作者 REN Yi LIU Cheng XU Pei 《Chinese Journal Of Geochemistry》 EI CAS 2008年第2期183-188,共6页
Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yang-t... Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yang-tze River Basin. In two typical catchments-the Fujiang River Catchment and the Wujiang River Catchment, rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use-forestland, farmland and grassland. Results showed that (1) within the same rainfall process, overland flow occurs first on farmland, then on grassland, and finally on forestland; (2) soil surface coverage has a great impact on the occurrence and amount of overland flow. The runoff amount can increase 2-4 times after the coverage is removed;(3) the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil, but it takes no effect on infiltration once overland flow becomes stable; (4) the runoff coefficient of the limestone soil forestland is greater than that of the yellow soil forest land, but less than that of the farmland; (5) three empirical infiltration models, including Horton' model, Kostiakov' model, and modified Kostiakov' model, were compared by using the observed results under rainfall simulation. The results showed that the Kostiakov' model performed better than both the Horton' model and modified Kostiakov model. According to the results of this research, the Kostiakov's model can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin. 展开更多
关键词 山地 四川盆地 降雨量 河流
下载PDF
Rainfall-runoff simulation and flood forecasting for Huaihe Basin 被引量:5
8
作者 Li Zhijia Wang Lili +2 位作者 Bao Hongjun Song Yu Yu Zhongbo 《Water Science and Engineering》 EI CAS 2008年第3期24-35,共12页
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su... The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood. 展开更多
关键词 rainfall-runoff simulation Xin'anjiang model Muskingum method channel routing real-time forecasting flood diversion and reta.rding area
下载PDF
Hydrological daily rainfall-runoff simulation with BTOPMC model and comparison with Xin'anjiang model 被引量:12
9
作者 Hong-jun BAO Li-li WANG +2 位作者 Zhi-jia LI Lin-na ZHAO Guo-ping ZHANG 《Water Science and Engineering》 EI CAS 2010年第2期121-131,共11页
A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, ... A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability. 展开更多
关键词 digital elevation model BTOPMC model Xin' anjiang model daily rainfall-runoff simulation SCE-UA method humid watershed semi-humid to semi-arid watershed
下载PDF
Experimental research on the influence of two cultivation practices on rainfall runoff-and (sandy and muddy) sediment-generating processes in purple soil environment 被引量:1
10
作者 XU Pei WANG Yukuan FU Bin 《Chinese Journal Of Geochemistry》 EI CAS 2008年第4期370-376,共7页
Rainfall simulations have been conducted to study the soil erosion process of purple soil in two cultiva-tion practices—contour cultivation and downslope cultivation. Results showed that under the two cultivation pra... Rainfall simulations have been conducted to study the soil erosion process of purple soil in two cultiva-tion practices—contour cultivation and downslope cultivation. Results showed that under the two cultivation prac-tices,the surface runoff can be described by the logarithmic function formula. In the initial period of rainfall,the amount of runoff increased with the rainfall duration and 20 minutes later it became relatively constant. The chang-ing process of soil erosion rate may be described by the logarithmic function formula. The erosion rate increased with the rainfall duration and 20 minutes later it also became constant. Under downslope cultivation condition,the soil erosion rate increased more significantly than that under contour cultivation condition in the case of gentle rain-fall intensity,and there is no obvious difference in erosion rate for downslope cultivation and contour cultivation practices. However,with increasing rainfall intensity the soil erosion rate under the downslope cultivation condition could be more than 30 times that under the contour cultivation condition. But this kind of difference would be re-duced to some extent in the case of heavy rain. 展开更多
关键词 降雨量模拟 土壤侵蚀 径流 等高线
下载PDF
Runoff Simulation of Shitoukoumen Reservoir Basin Based on SWAT Model
11
作者 XIE Miao LI Hong-yan +1 位作者 LIU Tie-juan RU Shi-rong 《Meteorological and Environmental Research》 CAS 2012年第12期1-4,共4页
[Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed... [Objective] The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future. 展开更多
关键词 SWAT model runoff simulation Shitoukoumen Reservoir China
下载PDF
A Diffusion Wave Based Integrated FEM-GIS Model for Runoff Simulation of Small Watersheds
12
作者 Reddy K. VENKATA T. I. ELDHO E. P. RAO 《Journal of Water Resource and Protection》 2009年第6期391-399,共9页
In this paper, an integrated model based on Finite Element Method (FEM) and Geographical Information Systems (GIS) has been presented for the runoff simulation of small watersheds. Interception is estimated by an expo... In this paper, an integrated model based on Finite Element Method (FEM) and Geographical Information Systems (GIS) has been presented for the runoff simulation of small watersheds. Interception is estimated by an exponential model based on Leaf Area Index (LAI). Philip two term model has been used for the estima-tion of infiltration in the watershed. For runoff estimation, diffusion wave equations solved by FEM are used. Interflow has been simulated using FEM based model. The developed integrated model has been applied to Peacheater Creek watershed in USA. Sensitivity analysis of the model has been carried out for various pa-rameters. From the results, it is seen that the model is able to simulate the hydrographs with reasonable ac-curacy. The presented model is useful for runoff estimation in small watersheds. 展开更多
关键词 Diffusion Wave MODEL GIS INTERCEPTIon INTERFLOW Philip INFILTRATIon MODEL runoff simulation
下载PDF
Simulation Experimental Study on Hydrodynamics Process of Erosion and Sediment by Runoff in Grassland
13
作者 XING En-de CUI Wei +1 位作者 LIU Yan-ping LI Jin-rong 《Meteorological and Environmental Research》 2012年第9期66-68,共3页
[Objective]The aim was to study the simulation test of hydrodynamics process of erosion.[Method]Through the runoff scouring experiment,the property of soil erosion in Damaoqi grassland in Inner Mongolia was studied.Th... [Objective]The aim was to study the simulation test of hydrodynamics process of erosion.[Method]Through the runoff scouring experiment,the property of soil erosion in Damaoqi grassland in Inner Mongolia was studied.The process and mechanism of soil erosion were studied.[Result]The results of runoff scouring experiment on inner Damaoqi steppe showed that the mean flow velocity of change slope increased with the discharge of flow and slope gradient.The mean silt content rate,the mean sediment transport rate and the mean sheer stress all increased when the discharge of flow increased,which changed in parabolic form with the increase of slope gradient and the critical gradient is 25°.The relationship between the mean sediment transport rate and the mean sheer stress was linear.[Conclusion]The study provided theoretic basis for the report of soil erosion in grassland in China. 展开更多
关键词 runoff scouring Grassland steppe Sand process simulation experiment China
下载PDF
Evaluating the Performance of HEC-HMS and SWAT Hydrological Models in Simulating the Rainfall-Runoff Process for Data Scarce Region of Ethiopian Rift Valley Lake Basin
14
作者 Mohammedreshid A. Aliye Alemu O. Aga +1 位作者 Teshale Tadesse Petros Yohannes 《Open Journal of Modern Hydrology》 2020年第4期105-122,共18页
A number of physically-based and distributed watershed models have been developed to model the hydrology of the watershed. For a specific watershed, selecting the most suitable hydrological model is necessary to obtai... A number of physically-based and distributed watershed models have been developed to model the hydrology of the watershed. For a specific watershed, selecting the most suitable hydrological model is necessary to obtain good simulated results. In this study, two hydrologic models, Soil and Water Assessment Tool (SWAT) and Hydrological Engineering Centre<span style="font-family:;" "=""><span style="font-family:Verdana;">-The Hydrologic Modeling System (HEC-HMS), were applied to predict streamflow in Katar River basin, Ethiopia. The performances of these two models were compared in order to select the right model for the study basin. Both models were calibrated and validated with stream flow data of 11 years (1990-2000) and 7 years (2001-2007) respectively. Nash-Sutcliffe Error (NSE) and Coefficient of Determination (R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) were used to evaluate efficiency of the models. The results of calibration and validation indicated that, for river basin Katar, both models could simulate fairly well the streamflow. SWAT gave the model performance with the R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> > 0.78 and NSE > 0.67;and the HEC-HMS model provided the model performance with the R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> > 0.87 and NSE > 0.73. Hence, the simulated streamflow given by the HEC-HMS model is more satisfactory than that provided by the SWAT model.</span></span> 展开更多
关键词 HEC-HMS SWAT Katar River Basin Peak Flow Rainfall-runoff simulation
下载PDF
Rainfall-Runoff Modeling and Hydrological Responses to the Projected Climate Change for Upper Baro Basin, Ethiopia
15
作者 Teressa Negassa Muleta Knolmár Marcell 《American Journal of Climate Change》 2023年第2期219-243,共25页
This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-H... This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R<sup>2</sup>) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin. 展开更多
关键词 Climate Change Flow simulation HEC-HMS Rainfall-runoff Modeling Upper Baro Basin
下载PDF
A Study of Rainfall-Runoff Response in a Catchment Using TOPMODEL 被引量:8
16
作者 孙菽芬 邓惠平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期87-95,共9页
The simplicity of Topography-based hydrological model (TOPMODEL), as a way of reflecting the topographic controls on soil water storage and runoff generation, has become more attractive and more popular for land surfa... The simplicity of Topography-based hydrological model (TOPMODEL), as a way of reflecting the topographic controls on soil water storage and runoff generation, has become more attractive and more popular for land surface process study since digital elevation models (DEMs) have become widely available. In this paper, the effect of the topography index on soil water storage distribution, which is the key to TOPMODEL, is explained. Then a simple water cycle model for estimating other components of the surface water cycle is developed, which is implemented into the TOPMODEL to integrate the water cycle of the catchment. Using the output of a DEM from 100 m×100 m resolution data and a single flow direction algorithm, the index distribution function is calculated for a catchment (around 2500 km2 )in the upper reaches of the Yangtze River under different channel initiation thresholds. Finally, the daily and monthly rainfall-runoff response from 1960 to 1987 for the catchment is simulated with the TOPMODEL coupled with the simple water cycle model. 展开更多
关键词 TOPMODEL runoff simulation upper reaches of the Yangtze River
下载PDF
Application of SCS Model in Estimation of Runoff from Small Watershed in Loess Plateau of China 被引量:14
17
作者 LIU Xianzhao LI Jiazhu 《Chinese Geographical Science》 SCIE CSCD 2008年第3期235-241,共7页
Soil Conservation Service (SCS) model, developed by U. S. Soil Conservation Service in 1972, has been widely applied in the estimation of runoff from an small watershed. In this paper, based on the remote sensing geo-... Soil Conservation Service (SCS) model, developed by U. S. Soil Conservation Service in 1972, has been widely applied in the estimation of runoff from an small watershed. In this paper, based on the remote sensing geo-information data of land use and soil classification all obtained from Landsat images in 1996 and 1997 and con-ventional data of hydrology and meteorology, the SCS model was investigated for simulating the surface runoff for single rainstorm in Wangdonggou watershed, a typical small watershed in the Loess Plateau, located in Changwu County of Shaanxi Province of China. Wangdonggou watershed was compartmentalized into 28 sub-units according to natural draining division,and the table of curve number (CN) values fitting for Wangdonggou watershed was also presented. During the flood period from 1996 to 1997, the hydrograph of calculated runoff process using the SCS model and the hydrograph of observed runoff process coincided very well in height as well as shape, and the model was of high precision above 75%. It is indicated that the SCS model is legitimate and can be successfully used to simulate the runoff generation and the runoff process of typical small watershed based on the remote sensing geo-information in the Loess Plateau. 展开更多
关键词 runoff simulation small watershed SCS model Loess Plateau
下载PDF
Hillslope soil erosion and runoff model for natural rainfall events 被引量:3
18
作者 Zhanyu Zhang Guohua Zhang +1 位作者 Changqing Zuo Xiaoyu Pi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期277-283,共7页
By using the momentum theorem and waterbalance principle, basic equations of slope runoff were derived, soil erosion by raindrop splash and runoff were discussed and a model was established for decribing hillslope soi... By using the momentum theorem and waterbalance principle, basic equations of slope runoff were derived, soil erosion by raindrop splash and runoff were discussed and a model was established for decribing hillslope soil erosion processes. The numerical solution of the model was obtained by adopting the Preissmann format and considering the common solution-determining conditions, from which not only the runoff and soil erosion but also their processes can be described. The model was validated by ten groups of observation data of Soil Conservation Ecological Science and Technology Demonstration Park of Jiangxi Province. Comparisons show that the maximum relative error between simulation and experimental data is about 10.98% for total runoff and 15 % for total erosion, 5.2% for runoffprocess and 6.1% for erosion process, indicating that the model is conceptually realistic and reliable and offers a feasible approach for further studies on the soil erosion process. 展开更多
关键词 Overland flow Raindrop splash runoff Erosion process Numerical simulation
下载PDF
Phosphorus transport with runoff of simulated rainfall from purple-soil cropland of different surface conditions 被引量:8
19
作者 高扬 朱波 《Journal of Chongqing University》 CAS 2008年第2期85-92,共8页
We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainf... We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min,a downfall of 0.90 mm/min,and a rainstorm of 1.86 mm/min.Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity,the slope and surface conditions of cropland.The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff,but has little influence on runoff process at the same sloping degree.Vegetated soil has a smaller phosphorous loss,particularly much less in the particulate form.A heavier rainfall flushes away more phosphorous.Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous.Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could,if not controlled properly,deteriorate the water quality of the Three Gorges Reservoir. 展开更多
关键词 PHOSPHORUS EUTROPHICATIon runoff soil pollution rainfall simulation overland flow subsurface runoff phosphorus transport purple soil
下载PDF
The Suitability of Using Leaf Area Index to Quantify Soil Loss under Vegetation Cover 被引量:7
20
作者 ZHANG Wentai YU Dongsheng +4 位作者 SHI Xuezheng WANG Hongjie GU Zhujun ZHANG Xiangyan TAN Manzhi 《Journal of Mountain Science》 SCIE CSCD 2011年第4期564-570,共7页
Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss u... Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation. 展开更多
关键词 Leaf area index(LAI) runoff steady state Sediment concentration Simulated rainfall
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部