期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Simultaneous removal of Cr(Ⅵ), Cd, and Pb from aqueous solution by iron sulfide nanoparticles: Influencing factors and interactions of metals 被引量:2
1
作者 Qingrong Zou Wanyu Wang +1 位作者 Tong Zhang Yuanyuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期245-255,共11页
Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) ... Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) were stabilized with carboxymethyl cellulose(CMC) and utilized to remove Cr(Ⅵ),Cd,and Pb from an aqueous solution.Batch experiments,a Visual MINTEQ model,scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectrometer(XPS) analysis were used to determine the removal efficiencies,influencing factors,and mechanisms.The FeS NP suspension simultaneously removed Cr(Ⅵ),Cd,and Pb from an aqueous solution.The concentrations of Cr(Ⅵ),Cd,and Pb decreased from 50,10,and 50 mg·L^(-1) to 2.5,0.1,and 0.1 mg·L^(-1),respectively.The removal capacities were up to 418,96,and 585 mg per gram of stabilized FeS NPs,respectively.The acidic conditions significantly favored the removal of aqueous Cr(Ⅵ) while the alkaline conditions favored the removal of Cd and Pb.Oxygen slightly inhibited the removal of Cr(Ⅵ),but it had no significant influence on the removal of Cd and Pb.A potential mechanism was proposed for the simultaneous removal of Cr(Ⅵ),Cd,and Pb using FeS NPs.The interactions of the three heavy metals involved a cationic bridging effect on Cr(Ⅵ) by Cd,an enhanced adsorption effect on Cd by [Cr,Fe](OH)_3,precipitation of PbCrO_4,and transformation of PbCrO_4 to PbS.Therefore,FeS NPs have a high potential for use in the simultaneous removal of Cr(Ⅵ),Cd,and Pb from contaminated aqueous solutions. 展开更多
关键词 Iron sulfide NANOPARTICLES Multi-heavy metal contamination simultaneous removal Environment REMEDIATION
下载PDF
Simultaneous removal of ethyl acetate, benzene and toluene with gliding arc gas discharge 被引量:1
2
作者 Zheng BO Jian-hua YAN +2 位作者 Xiao-dong LI Yong CHI Ke-fa CEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期695-701,共7页
The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficienc... The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process. 展开更多
关键词 Plasma Gliding arc gas discharge (GA) Volatile organic compounds (VOCs) simultaneous removal Printing and coating process
下载PDF
Simultaneous Removal of Thiophene and Dibenzothiophene by Immobilized Pseudomonas delafieldii R-8 cells
3
作者 唐煌 李强 +2 位作者 王泽龙 闫道江 邢建民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期47-51,共5页
Biodesulfurization (BDS) is a promising technology for deep desulfurization. In this work, Pseudomonas delafieldii R-8 cells are immobilized in calcium alginate beads and used for BDS of transportation fuels. It is ... Biodesulfurization (BDS) is a promising technology for deep desulfurization. In this work, Pseudomonas delafieldii R-8 cells are immobilized in calcium alginate beads and used for BDS of transportation fuels. It is found that thiophene and dibenzothiophene (DBT) can be simultaneously metabolized by immobilized R-8 cells. The initial sulfur content in the model oil is 300 mg·kg-1 (thiophene " DI3T= 1 " 1). After 10 h of treatment, the thiophene concentration is reduced by 40%, while DBT is reduced by 25%. The utilization rate of thiophene is faster than that of DBT. Moreover, the oil/water ratio of alginate immobilized cells is studied to reduce the water volume in desulfurization systems. Long-term recycling of BDS by alginate immobilized cells is carried out with oil/water ratio at 5 : 1. The immobilized cells are successfully reused over 15 batch cycles. In the last batch, the desulfurization activity remains at least 75% of the first batch. 展开更多
关键词 BIODESULFURIZATION simultaneous removal alginate immobilization long-term recycling
下载PDF
Simultaneous removal of ethanol, acetaldehyde and nitrogen oxides over V-Pd/γ-Al_2O_3-TiO_2 catalyst
4
作者 Zhe Li Jing Wang Kai He Xia An Wei Huang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期167-172,共6页
V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy ... V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (〈300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites. 展开更多
关键词 V-Pd/γ-Al2O3-TiO2 simultaneous removal ETHANOL ACETALDEHYDE nitrogen oxides
下载PDF
Multi-pollutants simultaneous removal from flue gas
5
作者 Gao Xiang Wu Zuliang Luo Zhongyang Ni Mingjiang Cen Kefa 《Engineering Sciences》 EI 2010年第1期27-31,共5页
The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The se... The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The semi-dry flue gas cleaning technology using multi-stages humidifier and additive can improve oxidation and absorption, and it can achieve high multi-pollutants removal efficiency. The CRS discharge can produce many OH radicals that promote NO oxidation. Combining NaOH absorption can achieve high deSO2 and deNO, efficiencies. It is fit for the reconstruction of primary wet flue gas desulfurization (WFGD). In addition, using NaClO2 as additive in the absorbent of WFGD can obtain very high removal efficiency of SO2 and NOx. 展开更多
关键词 simultaneous removal SEMI-DRY PLASMA ADDITIVE
下载PDF
Science Letters:Simultaneous removal of nitrate and heavy metals by iron metal 被引量:1
6
作者 郝志伟 徐新华 +3 位作者 金剑 何平 刘永 汪大翚 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第5期307-310,共4页
Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing comm... Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed. 展开更多
关键词 simultaneously removing Iron metal NITRATE Heavy metal
下载PDF
Simultaneous Removal of Soot and NO_x over Precious Metal Catalysts O_2-Rich Atmospheres and in the Presence of H_2O and SO_2
7
作者 朱荣淑 姚泽 +3 位作者 顾婷坤 杨荣 曹罡 欧阳峰 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期811-815,共5页
The activities of ZrO_2-supported precious metal catalysts for simultaneous removal of soot and NO_x in the presence of rich O_2and H_2O as well as SO_2 have been studied by keeping loose contact between catalyst and ... The activities of ZrO_2-supported precious metal catalysts for simultaneous removal of soot and NO_x in the presence of rich O_2and H_2O as well as SO_2 have been studied by keeping loose contact between catalyst and soot.The results show that only Ru,Ir and Rh have catalytic activity for simultaneous removal of soot and NO_x and the order of catalytic activity is Ru > Ir > Rh.Pt has the catalytic activity only for the removal of soot,and Ag,Pd,and Au have hardly any catalytic activities for the removal of soot and NO_x.The relationships between catalytic activity of precious metal catalysts and various reaction conditions were discussed. 展开更多
关键词 precious metal simultaneous catalytic removal SOOT NO_x
下载PDF
Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor 被引量:8
8
作者 Siqing Xia Jun Liang +1 位作者 Xiaoyin Xu Shuang Shen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第1期96-104,共9页
A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofllm reactor to simultaneously reduce nitrate (NO3--N), sulfate (SO42-), bromate (BrO3-), hexav... A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofllm reactor to simultaneously reduce nitrate (NO3--N), sulfate (SO42-), bromate (BrO3-), hexavalent chromium (Cr(VI)) and para- chloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofiim carder and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO3--N, SO42-, BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day.m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95 %. The removal flux comparison between phases varying in surface loading and 1-12 pressure showed that decreasing surface loading or increasing 1-12 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO3--N and SO42- reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while sulfate was the second of the five contaminants. 展开更多
关键词 oxidized contaminant GROUNDWATER simultaneous removal hydrogen-based membrane biofilm reactor
原文传递
Simultaneous removal of NO_(x)and chlorobenzene on V_(2)O_(5)/TiO_(2)granular catalyst:Kinetic study and performance prediction 被引量:3
9
作者 Lina Gan Kezhi Li +4 位作者 Hejingying Niu Yue Peng Jianjun Chen Yuandong Huang Junhua Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期263-272,共10页
The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology,which is still in the initial stage and facing many challenges.We developed a V_(2)O_(5)/TiO_(2)gr... The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology,which is still in the initial stage and facing many challenges.We developed a V_(2)O_(5)/TiO_(2)granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene(i.e.,an important precursor of dioxins).The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability.Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited,the reaction order of each reaction was not considerably affected,and the pseudo-first-order reaction kinetics was still followed.The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants(i.e.,NO and dioxins)emission control. 展开更多
关键词 NO_(x)Chlorobenzene simultaneous removal Kinetic study Performance prediction V_(2)O_(5)/TiO_(2)
原文传递
Supported catalysts for simultaneous removal of SO_(2),NO_(x),and Hg^(0)from industrial exhaust gases:A review 被引量:2
10
作者 Ke Zhao Xin Sun +4 位作者 Chi Wang Xin Song Fei Wang Kai Li Ping Ning 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期2963-2974,共12页
The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively ... The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively removes SO_(2),NO_(x)and Hg^(0)at low temperatures.This paper first reviews the simultaneous removal of SO_(2),NO_(x)and Hg^(0)by unsupported and supported catalysts.It then describes and compares the research progress of various carriers,eg.,carbon-based materials,metal oxides,silica,molecular sieves,metal-organic frameworks,and pillared interlayered clays,in the simultaneous removal of SO_(2),NO_(x)and Hg^(0).The effects of flue-gas components(such as O_(2),NH3,HCl,H2 O,SO_(2),NO and Hg^(0))on the removal of SO_(2),NOx,and Hg^(0)are discussed comprehensively and systematically.After summarizing the pollutantremoval mechanism,the review discusses future developments in the simultaneous removal of SO_(2),NOx and Hg^(0)by catalysts. 展开更多
关键词 Supported catalysts simultaneous removal SO_(2) NO_(x)and Hg^(0) Industrial exhaust gases
原文传递
Simultaneous catalytic removal of NOx and diesel PM over La_(0.9) K_(0.1) CoO_3 catalyst assisted by plasma 被引量:1
11
作者 PEIMei-xiang LINHe SHANGGUANWen-feng HUANGZhen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期220-223,共4页
The simultaneous removal of NOx and particulate matter(PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La 0.9 K 0.1 CoO 3 loaded on γ-Al 2O 3 spherules with the assistant of pl... The simultaneous removal of NOx and particulate matter(PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La 0.9 K 0.1 CoO 3 loaded on γ-Al 2O 3 spherules with the assistant of plasma. It was found that NOx was reduced by PM in oxygen rich atmosphere, the CO 2 and N 2 were produced in the same temperature window without considering the N 2 formed by plasma decomposition. As a result, the temperature for the PM combustion decreases and the reduction efficiency of NOx to N 2 increases during the plasma process, which indicated that the activity of the catalyst can be improved by plasma. The NOx is decomposed by plasma at both low temperature and high temperature. Therefore, the whole efficiency of NOx conversion is enhanced. 展开更多
关键词 simultaneous removal plasma assisted catalysis NOx PM DIESEL
下载PDF
Simultaneous removal of NO and dichloromethane(CH_(2)Cl_(2)) over Nb-loaded cerium nanotubes catalyst 被引量:1
12
作者 Weilong Ouyang Yi Zhou +3 位作者 Xiaoqi Fei Yarong Bai Haiqiang Wang Zhongbiao Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期175-184,共10页
Herein,a series of niobium oxide supported cerium nanotubes(Ce NTs)catalysts with different loading amount of Nb_(2)O_(5)(0–10 wt.%)were prepared and used for selective catalytic reduction of NOxwith NH_(3)(NH_(3)-SC... Herein,a series of niobium oxide supported cerium nanotubes(Ce NTs)catalysts with different loading amount of Nb_(2)O_(5)(0–10 wt.%)were prepared and used for selective catalytic reduction of NOxwith NH_(3)(NH_(3)-SCR)in the presence of CH_(2)Cl_(2).Commercial V_(2)O_(5)-WO_(3)-TiO_(2) catalyst was also prepared for comparison.The physcial properties and chemical properties of the Nb_(2)O_(5) loaded cerium nanotubes catalysts were investigated by X-ray diffractometer,Transmission electron microscope,Brunauer-Emmett-Teller specific surface area,H_(2)-temperature programmed reduction,NH_(3)-temperature programmed desorption and Xray photoelectron spectroscopy.The experiment results showed that the loading amount of Nb_(2)O_(5) had a significant effect on the catalytic performance of the catalysts.10 wt.%Nb-Ce NTs catalyst presented the best NH_(3)-SCR performance and degradation efficiency of CH_(2)Cl_(2) among the prepared catalysts,due to its superior redox capability,abundant surface oxygen species and acid sites,the interaction between Nb and Ce,higher ratio of Nb^(4+)/(Nb^(5+)+Nb^(4+))and Ce^(3+)/(Ce^(3+)+Ce^(4+)),as well as the special tubular structure of cerium nanotube.This study may provide a practical approach for the design and synthesis of SCR catalysts for the simultaneously removal NOxand chlorinated volatile organic compounds(CVOCs)emitted from the stationary industrial sources. 展开更多
关键词 Cerium nanotubes Niobium oxide Selective catalytic reduction Nitrogen oxides CH_(2)Cl_(2) simultaneous removal
原文传递
Enhanced catalytic activity for simultaneous removal of PCDD/Fs and NO over carbon nanotubes modified MnO_(x)-CeO_(2)/TiO_(2)catalyst at low temperatu 被引量:1
13
作者 Qiulin Wang Zhuping Jiang +1 位作者 Jianjian Zhou Jin Jing 《Waste Disposal and Sustainable Energy》 2021年第1期63-71,共9页
Simultaneous catalytic removal of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and nitrogen oxides(NO_(x))emission at low temperature is of great significance to solve the multiple air pollution problem... Simultaneous catalytic removal of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and nitrogen oxides(NO_(x))emission at low temperature is of great significance to solve the multiple air pollution problem caused during waste incineration.A novel catalyst with excellent low-temperature activity towards PCDD/Fs catalytic decomposition,as well as selective catalytic reduction(SCR)of NO with NH_(3)is urgently needed to simultaneously control PCDD/Fs and NO emis-sions.Manganese-cerium composite oxides supported on titanium dioxide(MnO_(x)-CeO_(2)/TiO_(2))or TiO_(2)and carbon nano-tubes(CNTs)composite carrier(MnO_(x)-CeO_(2)/TiO_(2)-CNTs)were prepared using sol-gel method,and their catalytic activity towards simultaneous abatement of ortho-dichlorobenzene(o-DCBz,model molecular to simulate PCDD/Fs)and NO was investigated.In comparison with their removal,the simultaneous removal efficiencies of o-DCBz and NO over MnO_(x)-CeO_(2)/TiO_(2)catalyst are lowered to 27.9%and 51.3%at 150℃under the gas hourly space velocity(GHSV)of 15,000 h−1,due to the competition between the reactants for the limited surface acid sites and surface reactive oxygen species.CNTs addition improves the catalytic activity for their simultaneous removal.The optimum condition occurs on MnO_(x)-CeO_(2)/TiO_(2)combined with 20 wt.%CNTs that above 70%of o-DCBz and NO are removed simultaneously.Characterization results reveal that MnO_(x)-CeO_(2)/TiO_(2)-CNTs catalyst with proper CNTs content has larger Brunauer-Emmet-Teller surface area and greatly improved surface acidity property,which are beneficial to both o-DCBz and NO adsorption.Moreover,the relatively higher surface atomic concentration of Mn^(4+)as well as the existence of abundant surface Ce^(3+)atom accelerates the redox cycle of the catalyst and enriches the surface reactive oxygen species.All the above factors alleviate the competition effect between o-DCBz catalytic oxidation and NH_(3)-SCR reaction and are conducive to the simultaneous abatement of o-DCBz and NO.However,excess CNTs make less contribution on enhancing the interaction between Mn atom and Ce atom,thereby result-ing in less improvement in the catalytic activity. 展开更多
关键词 o-DCBz catalytic oxidation simultaneous removal MnO_(x)-CeO_(2)catalyst Composite carrier Carbon nanotube
原文传递
A Cu-modified active carbon fiber significantly promoted H_(2)S and PH_(3) simultaneous removal at a low reaction temperature
14
作者 Yingwu Wang Ping Ning +5 位作者 Ruheng Zhao Kai Li Chi Wang Xin Sun Xin Song Qiang Lin 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第6期405-414,共10页
Poisonous gases,such as H_(2)S and PH3,produced by industrial production harm humans and damage the environment.In this study,H_(2)S and PH3 were simultaneously removed at low temperature by modified activated carbon ... Poisonous gases,such as H_(2)S and PH3,produced by industrial production harm humans and damage the environment.In this study,H_(2)S and PH3 were simultaneously removed at low temperature by modified activated carbon fiber(ACF)catalysts.We have considered the active metal type,content,precursor,calcination,and reaction temperature.Experimental results exhibited that ACF could best perform by loading 15%Cu from nitrate.The optimized calcination temperature and reaction temperature separately were 550℃ and 90℃.Under these conditions,the most removal capacity could reach 69.7 mg/g and 132.1 mg/g,respectively.Characterization results showed that moderate calcination temperature(550℃)is suitable for the formation of the copper element on the surface of ACF,lower or higher temperature will generate more cuprous oxide.Although both can exhibit catalytic activity,the role of the copper element is significantly greater.Due to the exceptional dispersibility of copper(oxide),the ACF can still maintain the advantages of larger specific surface area and pore volume after loading copper,which is the main reason for better performance of related catalysts.Finally,increasing the copper loading amount can significantly increase the crystallinity and particle size of copper(oxide)on the ACF,thereby improving its catalytic performance.In situ IR found that the reason for the deactivation of the catalyst should be the accumulation of generated H_(2)PO_(4)^(-) and S0_(4)^(2-)(H_(2)0)^(6) which could poison the catalyst. 展开更多
关键词 ACF H_(2)S PH_(3) CU Low temperature simultaneous removal
原文传递
Simultaneous adsorption of lead and cadmium on MnO_2-loaded resin 被引量:16
15
作者 Lijing Dong,Zhiliang Zhu,Hongmei Ma,Yanling Qiu,Jianfu ZhaoState Key Laboratory of Pollution Control and Resource Reuse,Tongji University,Shanghai 200092,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第2期225-229,共5页
MnO2-10aded D301 weak basic anion exchange resin has been used as adsorbent to simultaneously remove lead and cadmium ions from aqueous solution. The effects of adsorbent dosage, solution pH and the coexistent ions on... MnO2-10aded D301 weak basic anion exchange resin has been used as adsorbent to simultaneously remove lead and cadmium ions from aqueous solution. The effects of adsorbent dosage, solution pH and the coexistent ions on the adsorption were investigated. Experimental results showed that with the adsorbent dosage more than 0.6 g/L, both Pb^2+ and Cd^2+ were simultaneously removed at pH range 5-6. Except for HPO4^2-, the high concentration coexistent ions such as Na^+, K^+, Cl^-, NO3^-, SO4^2- and HCO3^-, showed no significant effect on the removal efficiency of both Pb^2+ and Cd^2+ under the experimental conditions. The coexistence of Mg^2+, Ca^2+ caused the reduction of Cd^2+ removal, but not for Pb^2+. The adsorption equilibrium for Pb^2+ and Cd^2+ could be excellently described by the Langmuir isotherm model with R^2 〉 0.99. The maximum adsorption capacity was calculated as 80.64 mg/g for Pb^2+ and 21.45 mg/g for Cd^2+. The adsorption processes followed the pseudo first-order kinetics model. MnO2-loaded D301 resin has been shown to have a potential to be used as an effective adsorbent for simultaneous removal of lead and cadmium ions from aqueous solution. 展开更多
关键词 MnO2-loaded resin ADSORPTION CADMIUM LEAD simultaneous removal
下载PDF
Simultaneous removing SO_2 and NO by a new system containing cobalt complex 被引量:4
16
作者 ZHOU Chun-qiong DENG Xian-he PAN Zhao-qun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期567-571,共5页
Absorption and catalytic oxidation of nitric oxide can be achieved by using cobalt(Ⅲ) ethylenediamine (Co(en)3^3+. When simultaneous absorbing SO2 and NO, the precipitation of Co2(SO3)3 will be yielded and th... Absorption and catalytic oxidation of nitric oxide can be achieved by using cobalt(Ⅲ) ethylenediamine (Co(en)3^3+. When simultaneous absorbing SO2 and NO, the precipitation of Co2(SO3)3 will be yielded and the NO removal will be decreased. A new catalyst system using Co(en)3^3+ coupled with urea has been developed to simultaneous remove NO and SO2 in the flue gas. NO is absorbed and catalytically oxidized to nitrite and nitrate by Co(en)3^3+. The dissolved oxygen in scrubbing solution from the feed stream acts as oxidant. Urea restrains the precipitation of Co2(SO3)3 by oxidizing SO3^2-to SO4^2- as COSO4 is more soluble in water. The experimental results proved that nearly all SO3^2- can be oxidized to SO4^2- and the high NO and SO2 removal could be obtained with the new system. The NO removal is influenced by gas flow rate, the concentration of Co(en)3^3+ and urea in the absorption solution, the temperature of the scrubbing solution and the content of oxygen in the flue gas. The low gas flow rate is favorable to increase the NO removal. The experiments proved that the NO removal could be maintained at more than 95% by the system of 0.02 mol/L Co(en)3^3+ and 1% urea at 50℃ with 10% O2 in the flue gas. 展开更多
关键词 simultaneous removing SO2 and NO Co(en)33+ UREA SO32- oxidation
下载PDF
Using NH_(2)-MIL-125(Ti)for efficient removal of Cr(Ⅵ)and Rh B from aqueous solutions:Competitive and cooperative behavior in the binary system
17
作者 Lei Zheng Lixia Sun +5 位作者 Jiangbo Qiu Junling Song Luyi Zou Yue Teng Yongzhong Zong Hongyan Yu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期437-450,共14页
The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications.Therefore,in this research,we used NH_2-MIL-125(Ti)to evaluate the single adsorption of hexavalent chromi... The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications.Therefore,in this research,we used NH_2-MIL-125(Ti)to evaluate the single adsorption of hexavalent chromium(Cr(Ⅵ))or Rhodamine B(RhB)in an aqueous solution and further investigate simultaneous adsorption experiments to compare the adsorption behavior changes.The main influencing factors,for example,reaction time,initial concentration,reaction temperature,and pH were studied in detail.In all reaction systems,the pseudo-second-order kinetic and Langmuir isotherm models were well illuminated the adsorption progress of Cr(Ⅵ)and RhB.Thermodynamic studies showed that the adsorption process was spontaneous and endothermic.As compared to the single system,the adsorption capacity of Cr(Ⅵ)in the binary system gradually decreased as the additive amount of RhB increased,whereas the adsorption capacity of RhB in the binary system was expanded brilliantly.When the binary reaction system contained 100 mg/L Cr(Ⅵ),the removal rate of RhB increased to 97.58%.The formation of Cr(Ⅵ)-RhB and Cr(Ⅲ)-RhB complexes was the cause that provided facilitation for the adsorption of RhB.These findings prove that the interactions during the water treatment process between contaminants may obtain additional benefits,contributing to a better adsorption capacity of co-existing contaminant. 展开更多
关键词 ADSORPTION Heavy metal ion Organic dye simultaneous removal Mechanism studies
原文传递
Thermodynamic analysis of Na−S−Fe−H_(2)O system for Bayer process 被引量:1
18
作者 Xue-jiao ZHOU Fei TAN +4 位作者 Yong-li CHEN Jian-guo YIN Wen-tang XIA Qing-yun HUANG Xu-dong GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期2046-2060,共15页
Thermodynamic diagrams of Na−S−Fe−H_(2)O system were constructed to analyze the behavior of sulfur and iron in the Bayer process.After digestion,iron mainly exists as Fe_(3)O_(4) and Fe_(2)O_(3) in red mud,and partial... Thermodynamic diagrams of Na−S−Fe−H_(2)O system were constructed to analyze the behavior of sulfur and iron in the Bayer process.After digestion,iron mainly exists as Fe_(3)O_(4) and Fe_(2)O_(3) in red mud,and partial iron transfers into solution as Fe(OH)_(3)^(−),HFeO_(2)^(−),Fe(OH)_(4)^(−)and Fe(OH)_(4)^(2−).The dominant species of sulfur is S^(2−),followed by SO_(4)^(2−),and then SO_(3)^(2−)and S_(2)O_(3)^(2−).The thermodynamic analysis is consistent with the iron and sulfur species distribution in the solution obtained by experiments.When the temperature decreases,sulfur and iron can combine and precipitate.Controlling low potential and reducing temperature are beneficial to removing them from the solution.XRD patterns show that NaFeS_(2)·2H_(2)O,FeS and FeS_(2) widely appear in red mud and precipitates of pyrite and high-sulfur bauxite digestion solution.Thermodynamic analysis can be utilized to guide the simultaneous removal of sulfur and iron in the Bayer process. 展开更多
关键词 high-sulfur bauxite Na−S−Fe−H_(2)O system thermodynamic analysis simultaneous removal SULFUR IRON Bayer process
下载PDF
Continuous treatment of azo acid dyes by photo-dependent denitrifying sludge
19
作者 HongJL OtakM 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期296-302,共7页
Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. T... Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time. The degradation rate of TOC decreased with a decrease in hydraulic retention time. AB92, which has nitro and hydroxyl substitutions in non para positions, was uniquely degraded. During continuous flow treatment experiments using PDDS, complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40 mg/L and 30 mg/L, respectively, was achieved with an HRT of 16. 展开更多
关键词 photo dependent denitrifying sludge (PDDS) continuous treatment simultaneous removals azo dye NITRATE
下载PDF
Pressure relief-dipping-microwave assisted polymerization of melamine-L-aspartic acid resin at activated carbon for purification of L-threonine fermented crude product
20
作者 Bin Li Wenshuai Tang +1 位作者 Aiguo Yuan Guanping Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第10期2034-2039,共6页
L-threonine(L-Thr) obtained by fermentation often contains vestigial hydrosoluble Pb(Ⅱ), Fe(Ⅱ), L-glutamic acid(L-Glu) etc., which affect the product quality. Poly melamine and L-aspartic acid(L-Asp) resin functiona... L-threonine(L-Thr) obtained by fermentation often contains vestigial hydrosoluble Pb(Ⅱ), Fe(Ⅱ), L-glutamic acid(L-Glu) etc., which affect the product quality. Poly melamine and L-aspartic acid(L-Asp) resin functional coconut shell activated carbon composite(PMA/AC) was prepared by a pressure relief-dipping-microwave assisted polymerization method for the simultaneous removals. The adsorption capacities of Pb(Ⅱ), Fe(Ⅱ) and L-Glu could reach to 82.34 mg·g^(-1), 57.82 mg·g^(-1) and 102.58 mg·g^(-1) at conditions of pH 5.0, 45 °C and 4 h with an initial concentration of 0.01 mol·L^(-1), respectively. The present PMA/AC was successfully used to the simultaneous removals of vestigial Pb(Ⅱ), Fe(Ⅱ) and L-Glu from the fermented crude product solution of L-Thr. Moreover, the PMA/AC was carefully characterized by FE-SEM, IR et al. analysis techniques, the results show that abundant PMA particles evenly distributed at the inner and outside surface of AC with a size of(50 ± 20) nm. 展开更多
关键词 L-Threonine fermented crude product simultaneous removals Activated carbon composites Absorption
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部