User interest mining on Sina Weibo is the basis of personalized recommendations,advertising,marketing promotions,and other tasks.Although great progress has been made in this area,previous studies have ignored the dif...User interest mining on Sina Weibo is the basis of personalized recommendations,advertising,marketing promotions,and other tasks.Although great progress has been made in this area,previous studies have ignored the differences among users:the varied behaviors and habits that lead to unique user data characteristics.It is unreasonable to use a single strategy to mine interests from such varied user data.Therefore,this paper proposes an adaptive model for user interest mining based on a multi-agent system whose input includes self-descriptive user data,microblogs and correlations.This method has the ability to select the appropriate strategy based on each user’s data characteristics.The experimental results show that the proposed method performs better than the baselines.展开更多
A user profile contains information about a user. A substantial effort has been made so as to understand users’ behavior through analyzing their profile data. Online social networks provide an enormous amount of such...A user profile contains information about a user. A substantial effort has been made so as to understand users’ behavior through analyzing their profile data. Online social networks provide an enormous amount of such information for researchers. Sina Weibo, a Twitter-like microblogging platform, has achieved a great success in China although studies on it are still in an initial state. This paper aims to explore the relationships among different profile attributes in Sina Weibo. We use the techniques of association rule mining to identify the dependency among the attributes and we found that if a user’s posts are welcomed, he or she is more likely to have a large number of followers. Our results demonstrate how the relationships among the profile attributes are affected by a user’s verified type. We also put some efforts on data transformation and analyze the influence of the statistical properties of the data distribution on data discretization.展开更多
文摘User interest mining on Sina Weibo is the basis of personalized recommendations,advertising,marketing promotions,and other tasks.Although great progress has been made in this area,previous studies have ignored the differences among users:the varied behaviors and habits that lead to unique user data characteristics.It is unreasonable to use a single strategy to mine interests from such varied user data.Therefore,this paper proposes an adaptive model for user interest mining based on a multi-agent system whose input includes self-descriptive user data,microblogs and correlations.This method has the ability to select the appropriate strategy based on each user’s data characteristics.The experimental results show that the proposed method performs better than the baselines.
文摘A user profile contains information about a user. A substantial effort has been made so as to understand users’ behavior through analyzing their profile data. Online social networks provide an enormous amount of such information for researchers. Sina Weibo, a Twitter-like microblogging platform, has achieved a great success in China although studies on it are still in an initial state. This paper aims to explore the relationships among different profile attributes in Sina Weibo. We use the techniques of association rule mining to identify the dependency among the attributes and we found that if a user’s posts are welcomed, he or she is more likely to have a large number of followers. Our results demonstrate how the relationships among the profile attributes are affected by a user’s verified type. We also put some efforts on data transformation and analyze the influence of the statistical properties of the data distribution on data discretization.