Based on analysis of geophysical data such as core observation, rock slices identification, physical property, scanning electron microscope, X-ray diffraction, logging data etc., 16 factors of sedimentation, diagenesi...Based on analysis of geophysical data such as core observation, rock slices identification, physical property, scanning electron microscope, X-ray diffraction, logging data etc., 16 factors of sedimentation, diagenesis, fluid pressure, and their relationships with reservoir physical property were analyzed, and the results indicate sedimentation is the internal factor controlling the reservoir property, diagenesis is the external and final decisive factor and abnormal fluid pressure is an important factor preserving the deep reservoir property. Quantitative characterization of diagenesis indicates that compaction and dissolution are more important than cementation and they respectively cause porosity change of-23.6% and 7.7% and -6.2%. Through optimizing 11 main controlling factors and constructing reservoir evaluation index (REI) according to the hierarchical cluster and principal component analysis, reservoir classification standard was established and reservoirs were divided into four classes. The studies show that Es~ SQ4 consists mainly of class I and II, while Es~ SQ6 is mainly of class III and II; the favorable zone is the north and south slope of Qibei sub-sag and the Liujianfang fault-nose. The successful application of the quantitative and comprehensive evaluation in the Qibei area verifies the advanced, practicable method of less artificial factor is suitable for the low porosity and permeability reservoir.展开更多
The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. Th...The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and limestone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thinbedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. Sedimentary environments have obvious controls over the development of the resource rocks. With regard to the abundance of organic matter, the hydrocarbon potential of the coastal swamp environment is the best, followed by the basin environment and the carbonate rock platform. The gas reservoir types of the Wujiaping Stage can be classified as conventional and unconventional gas reservoirs, like coal bed gas and shale gas; all of them have well exploration prospects.展开更多
Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantita...Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantitative lithofacies palaeogeographic map.Quantity means that in the palaeogeographic map,the division and identification of each palaeogeographic unit are supported by quantitative data and quantitative fundamental maps.Our lithofacies palaeogeographic maps are quantitative or mainly quantitative.A great number of quantitative lithofacies palaeogeographic maps have been published,and articles and monographs of quantitative lithofacies palaeogeography have been published successively,thus the quantitative lithofacies palaeogeography was formed and established.It is an important development in lithofacies palaeogeography.In composing quantitative lithofacies palaeogeographic maps,the key measure is the single factor analysis and multifactor comprehensive mapping method—methodology of quantitative lithofacies palaeogeography.In this paper,the authors utilize two case studies,one from the Early Ordovician of South China and the other from the Early Ordovician of Ordos,North China,to explain how to use this methodology to compose the quantitative lithofacies palaeogeographic maps,and to discuss the palaeogeographic units in these maps.Finally,three characteristics,i.e.,quantification,multiple orders and multiple types,of quantitative lithofacies palaeogeographic maps are conclusively discussed.展开更多
文摘Based on analysis of geophysical data such as core observation, rock slices identification, physical property, scanning electron microscope, X-ray diffraction, logging data etc., 16 factors of sedimentation, diagenesis, fluid pressure, and their relationships with reservoir physical property were analyzed, and the results indicate sedimentation is the internal factor controlling the reservoir property, diagenesis is the external and final decisive factor and abnormal fluid pressure is an important factor preserving the deep reservoir property. Quantitative characterization of diagenesis indicates that compaction and dissolution are more important than cementation and they respectively cause porosity change of-23.6% and 7.7% and -6.2%. Through optimizing 11 main controlling factors and constructing reservoir evaluation index (REI) according to the hierarchical cluster and principal component analysis, reservoir classification standard was established and reservoirs were divided into four classes. The studies show that Es~ SQ4 consists mainly of class I and II, while Es~ SQ6 is mainly of class III and II; the favorable zone is the north and south slope of Qibei sub-sag and the Liujianfang fault-nose. The successful application of the quantitative and comprehensive evaluation in the Qibei area verifies the advanced, practicable method of less artificial factor is suitable for the low porosity and permeability reservoir.
基金supported by the Twelfth Five-Year Plan of major national science and technology project "Study on accumulation conditions and favorable exploration area evaluation of marine carbonate rocks in South China" (2011ZX05004-001-004)
文摘The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the "single factor analysis and multifactor comprehensive mapping" method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and limestone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thinbedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. Sedimentary environments have obvious controls over the development of the resource rocks. With regard to the abundance of organic matter, the hydrocarbon potential of the coastal swamp environment is the best, followed by the basin environment and the carbonate rock platform. The gas reservoir types of the Wujiaping Stage can be classified as conventional and unconventional gas reservoirs, like coal bed gas and shale gas; all of them have well exploration prospects.
文摘Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantitative lithofacies palaeogeographic map.Quantity means that in the palaeogeographic map,the division and identification of each palaeogeographic unit are supported by quantitative data and quantitative fundamental maps.Our lithofacies palaeogeographic maps are quantitative or mainly quantitative.A great number of quantitative lithofacies palaeogeographic maps have been published,and articles and monographs of quantitative lithofacies palaeogeography have been published successively,thus the quantitative lithofacies palaeogeography was formed and established.It is an important development in lithofacies palaeogeography.In composing quantitative lithofacies palaeogeographic maps,the key measure is the single factor analysis and multifactor comprehensive mapping method—methodology of quantitative lithofacies palaeogeography.In this paper,the authors utilize two case studies,one from the Early Ordovician of South China and the other from the Early Ordovician of Ordos,North China,to explain how to use this methodology to compose the quantitative lithofacies palaeogeographic maps,and to discuss the palaeogeographic units in these maps.Finally,three characteristics,i.e.,quantification,multiple orders and multiple types,of quantitative lithofacies palaeogeographic maps are conclusively discussed.