期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Silicon Cluster Based Single Electron Transistor with Potential Room-Temperature Switching
1
作者 白占斌 刘翔凯 +5 位作者 连震 张康康 王广厚 史夙飞 皮孝东 宋凤麒 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第3期71-74,共4页
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ... We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time. 展开更多
关键词 QDS A Silicon Cluster Based single electron Transistor with potential Room-Temperature Switching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部