It is a relatively common phenomenon to limit technical features with parameter range in patent claims. It is argued in this article that the parameter range should be distinctly divided into single parameter range an...It is a relatively common phenomenon to limit technical features with parameter range in patent claims. It is argued in this article that the parameter range should be distinctly divided into single parameter range and whole parameter range depending on the different mode and function of limitation. Each and every parameter in a single parameter range may independently achieve a technical effect, and limit one embodiment alone; while a single parameter in the whole parameter range cannot independently ac...展开更多
<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;&qu...<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;">formulated to match the observations of photons from type 1a supernovae which were previously used to corroborate the standard </span><span style="font-family:Verdana;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">𝛬</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cold dark matter model. The new single parameter model extrapolates all the way back to the cosmic background radiation (CMB) without requiring a separate model to describe inflation of the space dimensions after the Big Bang. This single parameter model assumes that spacetime forms a finite symmetrical manifold with positive curvature. For the spacetime manifold to be finite, the time dimension must also have positive curvature. This model was formulated to consider whether the curvature of the time dimension may be related to the curvature of the space dimensions. This possibility is not considered in the more complex models previously used to fit the available redshift data. The geometry for the finite spacetime manifold was selected to be compatible with the Friedmann equation with positive curvature. The manifold shape was motivated by an assumption that there exists a matter hemisphere (when considering time together with a single space dimension) and an antimatter hemisphere to give a symmetrical and spherical overall spacetime manifold. Hence, the space dimension expands from a pole to the equator, at a maximum value for the time dimension. This is analogous to the expansion of a circle of latitude on a globe from a pole to the equator. The three space dimensions are identical so that any arbitrary single space direction may be selected. The initial intention was to modify the assumed geometry for the spacetime manifold to account for the presence of matter. It was surprisingly found that, within the error of the reported measurements, no further modification was necessary to fit the data. The Friedmann equation reduces to the Schwarzschild equation at the equator so this can be used to predict the total amount of mass in the Universe. The resulting prediction is of the order of 10</span><sup><span style="font-family:Verdana;">51</span></sup><span style="font-family:Verdana;"> kg. The corresponding density of matter at the current time is approxima</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">tely 1.6 × 10</span><sup><span style="font-family:Verdana;">-28</span></sup><span style="font-family:Verdana;"> kg<span style="color:#636363;"><span style="font-size:13.3333px;"><span style="white-space:nowrap;">·</span></span></span>m</span><sup><span style="font-family:Verdana;">-3</span></sup><span style="font-family:Verdana;">.</span></span>展开更多
This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively...This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.展开更多
By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-paramet...By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-parameter method, the ratio-method and the multiplication-method. In this work a lot of new calculation equations are given; a new concept on the all-around material constant is provided, which has functional relations with each of the typical material parameters: the fatigue strength coefficient σ′f, the fatigue strength exponent b′t, the fatigue ductility coefficient ε′f, the fatigue ductility exponent c′1, the average stress, the average strain, critical loading time and so on. In addition, an example of a car part is given, and some comparisons of calculation results are made. The calculation methods will have practical significance in avoiding the unnecessary fatigue tests, saving time, manpower and capital, as well as providing the convenience for engineering applications in a certain degree.展开更多
In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow conv...In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.展开更多
A novel virtual four-ocular stereo measurement system based on single high speed camera is proposed for measuring double beating wings of a high speed flapping insect. The principle of virtual monocular system consist...A novel virtual four-ocular stereo measurement system based on single high speed camera is proposed for measuring double beating wings of a high speed flapping insect. The principle of virtual monocular system consisting of a few planar mirrors and a single high speed camera is introduced. The stereo vision measurement principle based on optic triangulation is explained. The wing kinematics parameters are measured. Results show that this virtual stereo system not only decreases system cost extremely but also is effective to insect motion measurement.展开更多
文摘It is a relatively common phenomenon to limit technical features with parameter range in patent claims. It is argued in this article that the parameter range should be distinctly divided into single parameter range and whole parameter range depending on the different mode and function of limitation. Each and every parameter in a single parameter range may independently achieve a technical effect, and limit one embodiment alone; while a single parameter in the whole parameter range cannot independently ac...
文摘<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;">formulated to match the observations of photons from type 1a supernovae which were previously used to corroborate the standard </span><span style="font-family:Verdana;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">𝛬</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cold dark matter model. The new single parameter model extrapolates all the way back to the cosmic background radiation (CMB) without requiring a separate model to describe inflation of the space dimensions after the Big Bang. This single parameter model assumes that spacetime forms a finite symmetrical manifold with positive curvature. For the spacetime manifold to be finite, the time dimension must also have positive curvature. This model was formulated to consider whether the curvature of the time dimension may be related to the curvature of the space dimensions. This possibility is not considered in the more complex models previously used to fit the available redshift data. The geometry for the finite spacetime manifold was selected to be compatible with the Friedmann equation with positive curvature. The manifold shape was motivated by an assumption that there exists a matter hemisphere (when considering time together with a single space dimension) and an antimatter hemisphere to give a symmetrical and spherical overall spacetime manifold. Hence, the space dimension expands from a pole to the equator, at a maximum value for the time dimension. This is analogous to the expansion of a circle of latitude on a globe from a pole to the equator. The three space dimensions are identical so that any arbitrary single space direction may be selected. The initial intention was to modify the assumed geometry for the spacetime manifold to account for the presence of matter. It was surprisingly found that, within the error of the reported measurements, no further modification was necessary to fit the data. The Friedmann equation reduces to the Schwarzschild equation at the equator so this can be used to predict the total amount of mass in the Universe. The resulting prediction is of the order of 10</span><sup><span style="font-family:Verdana;">51</span></sup><span style="font-family:Verdana;"> kg. The corresponding density of matter at the current time is approxima</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">tely 1.6 × 10</span><sup><span style="font-family:Verdana;">-28</span></sup><span style="font-family:Verdana;"> kg<span style="color:#636363;"><span style="font-size:13.3333px;"><span style="white-space:nowrap;">·</span></span></span>m</span><sup><span style="font-family:Verdana;">-3</span></sup><span style="font-family:Verdana;">.</span></span>
基金Project supported by the National Natural Science Foundation of China(Grant No.61403143)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313739)+1 种基金the Science and Technology Foundation Program of Guangzhou City,China(Grant No.201510010124)the Excellent Doctorial Dissertation Foundation of Guangdong Province,China(Grant No.XM080054)
文摘This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors' knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach.
文摘By means of bidirectional combined coordinate system, three kinds of calculation methods are proposed with respect to the damage-evolvlng rate and the life of elastic-plastic material, which include the single-parameter method, the ratio-method and the multiplication-method. In this work a lot of new calculation equations are given; a new concept on the all-around material constant is provided, which has functional relations with each of the typical material parameters: the fatigue strength coefficient σ′f, the fatigue strength exponent b′t, the fatigue ductility coefficient ε′f, the fatigue ductility exponent c′1, the average stress, the average strain, critical loading time and so on. In addition, an example of a car part is given, and some comparisons of calculation results are made. The calculation methods will have practical significance in avoiding the unnecessary fatigue tests, saving time, manpower and capital, as well as providing the convenience for engineering applications in a certain degree.
基金Sponsored by the Natural Scientific Research Foundation of Heilongjiang Province(Grant No.40000045-6-07259)the Natural Scientific Research Inno-vation Foundation of Harbin Institute of Technology(Grant No.HIT.NSRIF.2008.59)+1 种基金the Scientific and Technology Critical Project of Harbin,Hei-longjiang Province(2004)the National Soft Science Key Foundation(Grant No.2008GXS5D113)
文摘In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid.
基金The work was supported by the National Science Fund for Distinguished Young Scholars of China under Grant No. 50125518.
文摘A novel virtual four-ocular stereo measurement system based on single high speed camera is proposed for measuring double beating wings of a high speed flapping insect. The principle of virtual monocular system consisting of a few planar mirrors and a single high speed camera is introduced. The stereo vision measurement principle based on optic triangulation is explained. The wing kinematics parameters are measured. Results show that this virtual stereo system not only decreases system cost extremely but also is effective to insect motion measurement.