Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process ...In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.展开更多
The awareness of applying genre in teaching and learning language has been aroused recently, and the choices of genres are connected closely with teachers' teaching goals and the needs of students. This paper whic...The awareness of applying genre in teaching and learning language has been aroused recently, and the choices of genres are connected closely with teachers' teaching goals and the needs of students. This paper which holds certain pedagogic purpose, analyzes genre-based teaching approach via an analysis on an English text book named Changes (level 1), aiming to help EFL teachers cultivate their genre awareness.展开更多
Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective...Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.展开更多
I.IntroductionThe study of the.lexical approach focuses on the understanding ofa lexical-grammatical unit,which was called lexical phrase by Nattinger and Decarrieo and was called chunks by Michel Lewis.It is a multi-...I.IntroductionThe study of the.lexical approach focuses on the understanding ofa lexical-grammatical unit,which was called lexical phrase by Nattinger and Decarrieo and was called chunks by Michel Lewis.It is a multi-word unit of varying lengths,which has a fixed orrelatively fixed structure and expresses a certain meaning.It is prefabri-cated and frequently used.As a language teacher I think chunks arevery useful in language teaching and the lexical approach is a way of improving my teaching.They make sense in the classroom as they展开更多
Objective:To assess the feasibility of coronary angiography by transradial approach with 4F catheter.Methods:The procedural details,picture quality,local complication were recorded for coronary by transradial approach...Objective:To assess the feasibility of coronary angiography by transradial approach with 4F catheter.Methods:The procedural details,picture quality,local complication were recorded for coronary by transradial approach with 4F catheter in 138 patients.Results:The success rate of angiography was 97.7%;fluoroscopy time was(5.05±3.23)minutes,total procedural time was(20.51±3.37)minutes;the incidence of dislodgement,excessive engagement of either coronary artery was 7.8%,9.4%,repectively;the angiographic scores for left anterior descending,circumflex and right coronary arteries were(2.87±0.40),(2.88±0.39),(2.90±0.35),respectively.The spasm complication occurred 4.3% in radial artery and 1.5% in coronary artery.There were no occlusion of radial artery during follow up.Conclusion:4F catheter could be the first chosen in some selecting patients for its nice maneuverability,fine images and fewer vascular complications.展开更多
Contrast Analysis (CA), Interlanguage(IL),cognitive approach are considered as three aspects closely related to Error Analysis (EA).Originated from CA, EA takes IL as its linguistic basis and cognitive approach as its...Contrast Analysis (CA), Interlanguage(IL),cognitive approach are considered as three aspects closely related to Error Analysis (EA).Originated from CA, EA takes IL as its linguistic basis and cognitive approach as its psychological support.Comparing with CA, EA pays more attention to the learner himself rather than the linguistic forms, and error is therefore shifted from what should be avoided to the crucial approach to the exploration of the learner’s cognitive process.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
By adopting the linguistic adaptation model in particular,irony is pragmatically analyzed as adaptation to the physical,social and mental elements in language use and language interpretation.Meanwhile the adaptation i...By adopting the linguistic adaptation model in particular,irony is pragmatically analyzed as adaptation to the physical,social and mental elements in language use and language interpretation.Meanwhile the adaptation is processed dynamically,and the medium of adaptation is salience.展开更多
In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass ...In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional ...This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional (2D) analysis approach.It shows that continuous-discrete 2D Roesser systems can be developed to describe the entire learning dynamics of both ILC schemes,based on which necessary and sufficient conditions for their stability can be provided.A numerical example is included to validate the theoretical analysis.展开更多
The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influen...The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influence of soil characteristics on the propagating seismic stress waves from the bedrock level to the ground surface during an earthquake. For the northeastern region of India, located in the highest seismic zone in the country, conducting an extensive GRA study is of prime importance. Conventionally, most of the GRA studies are carried out using the equivalent linear method, which, being a simplistic approach, cannot capture the nonlinear behavior of soil during seismic shaking. This paper presents the outcomes of a one-dimensional effective stress based nonlinear GRA conducted for Guwahati city(located in northeast India) incorporating the non-Masing load/unload/reload characteristics. The various ground response parameters evaluated from this study help in assessing the ground shaking, soil amplification, and site responses expected in this region. 2D contour maps, which are representative of the distribution of some of these parameters throughout Guwahati city, are also developed. The results presented herein can serve as guidelines for the design of foundations and superstructures in this region.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical mode...A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.展开更多
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision...Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.展开更多
In signal processing,multiresolution decomposition techniques allow for the separation of an acquired signal into sub levels,where the optimal level within the signal minimises redundancy,uncertainties,and contains th...In signal processing,multiresolution decomposition techniques allow for the separation of an acquired signal into sub levels,where the optimal level within the signal minimises redundancy,uncertainties,and contains the information required for the characterisation of the sensed phenomena.In the area of physiological signal processing for prosthesis control,scenarios where a signal decomposition analysis are required:the wavelet decomposition(WD)has been seen to be the favoured time-frequency approach for the decomposition of non-stationary signals.From a research perspective,the WD in certain cases has allowed for a more accurate motion intent decoding process following feature extraction and classification.Despite this,there is yet to be a widespread adaptation of the WD in a practical setting due to perceived computational complexity.Here,for neuro-muscular(electromyography)and brainwave(electroencephalography)signals acquired from a transhumeral amputee,a computationally efficient time domain signal decom-position method based on a series of heuristics was applied to process the acquired signals before feature extraction.The results showed an improvement in motion intent decoding prowess for the proposed time-domain-based signal decomposition across four different classifiers for both the neuromuscular and brain wave signals when compared to the WD and the raw signal.展开更多
That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concept...That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.展开更多
In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel fu...In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.展开更多
Taking a piece of social interaction as the object of the study,some basic and brief analysis on how meaning is negotiated is offered from both structural and functional perspectives.The potential purpose is to provid...Taking a piece of social interaction as the object of the study,some basic and brief analysis on how meaning is negotiated is offered from both structural and functional perspectives.The potential purpose is to provide readers with a maybe rough but clear presentation of those assorted methods used in conversation analysis.Out of the presentation is developed a possibility for language learners as well as teachers to be more aware of the differences and also the interrelations among these methodological approaches to conversation analysis,which may be of some relevance to teaching practice.展开更多
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金The Doctoral Program of Central South University (No. 2010ybfz048)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA021908)
文摘In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.
文摘The awareness of applying genre in teaching and learning language has been aroused recently, and the choices of genres are connected closely with teachers' teaching goals and the needs of students. This paper which holds certain pedagogic purpose, analyzes genre-based teaching approach via an analysis on an English text book named Changes (level 1), aiming to help EFL teachers cultivate their genre awareness.
文摘Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.
文摘I.IntroductionThe study of the.lexical approach focuses on the understanding ofa lexical-grammatical unit,which was called lexical phrase by Nattinger and Decarrieo and was called chunks by Michel Lewis.It is a multi-word unit of varying lengths,which has a fixed orrelatively fixed structure and expresses a certain meaning.It is prefabri-cated and frequently used.As a language teacher I think chunks arevery useful in language teaching and the lexical approach is a way of improving my teaching.They make sense in the classroom as they
文摘Objective:To assess the feasibility of coronary angiography by transradial approach with 4F catheter.Methods:The procedural details,picture quality,local complication were recorded for coronary by transradial approach with 4F catheter in 138 patients.Results:The success rate of angiography was 97.7%;fluoroscopy time was(5.05±3.23)minutes,total procedural time was(20.51±3.37)minutes;the incidence of dislodgement,excessive engagement of either coronary artery was 7.8%,9.4%,repectively;the angiographic scores for left anterior descending,circumflex and right coronary arteries were(2.87±0.40),(2.88±0.39),(2.90±0.35),respectively.The spasm complication occurred 4.3% in radial artery and 1.5% in coronary artery.There were no occlusion of radial artery during follow up.Conclusion:4F catheter could be the first chosen in some selecting patients for its nice maneuverability,fine images and fewer vascular complications.
文摘Contrast Analysis (CA), Interlanguage(IL),cognitive approach are considered as three aspects closely related to Error Analysis (EA).Originated from CA, EA takes IL as its linguistic basis and cognitive approach as its psychological support.Comparing with CA, EA pays more attention to the learner himself rather than the linguistic forms, and error is therefore shifted from what should be avoided to the crucial approach to the exploration of the learner’s cognitive process.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
文摘By adopting the linguistic adaptation model in particular,irony is pragmatically analyzed as adaptation to the physical,social and mental elements in language use and language interpretation.Meanwhile the adaptation is processed dynamically,and the medium of adaptation is salience.
基金Nature Science Foundation of China under Grant no.50179034.
文摘In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金supported by the National Natural Science Foundation of China(No.60727002,60774003,60921001,90916024)the COSTIND(No.A2120061303)the National 973 Program(No.2005CB321902)
文摘This paper deals with the iterative learning control (ILC) design for multiple-input multiple-output (MIMO),time-delay systems (TDS).Two feedback ILC schemes are considered using the so-called two-dimensional (2D) analysis approach.It shows that continuous-discrete 2D Roesser systems can be developed to describe the entire learning dynamics of both ILC schemes,based on which necessary and sufficient conditions for their stability can be provided.A numerical example is included to validate the theoretical analysis.
文摘The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influence of soil characteristics on the propagating seismic stress waves from the bedrock level to the ground surface during an earthquake. For the northeastern region of India, located in the highest seismic zone in the country, conducting an extensive GRA study is of prime importance. Conventionally, most of the GRA studies are carried out using the equivalent linear method, which, being a simplistic approach, cannot capture the nonlinear behavior of soil during seismic shaking. This paper presents the outcomes of a one-dimensional effective stress based nonlinear GRA conducted for Guwahati city(located in northeast India) incorporating the non-Masing load/unload/reload characteristics. The various ground response parameters evaluated from this study help in assessing the ground shaking, soil amplification, and site responses expected in this region. 2D contour maps, which are representative of the distribution of some of these parameters throughout Guwahati city, are also developed. The results presented herein can serve as guidelines for the design of foundations and superstructures in this region.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
文摘A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.
文摘Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.
基金National Natural Science Foundation of China,Grant/Award Numbers:#U1613222,#81850410557,#8201101443The Shenzhen Science and Technology Program,Grant/Award Number:#SGLH20180625142402055CAS President's International Fellowship Initiative Grant,Grant/Award Number:#2019PB0036。
文摘In signal processing,multiresolution decomposition techniques allow for the separation of an acquired signal into sub levels,where the optimal level within the signal minimises redundancy,uncertainties,and contains the information required for the characterisation of the sensed phenomena.In the area of physiological signal processing for prosthesis control,scenarios where a signal decomposition analysis are required:the wavelet decomposition(WD)has been seen to be the favoured time-frequency approach for the decomposition of non-stationary signals.From a research perspective,the WD in certain cases has allowed for a more accurate motion intent decoding process following feature extraction and classification.Despite this,there is yet to be a widespread adaptation of the WD in a practical setting due to perceived computational complexity.Here,for neuro-muscular(electromyography)and brainwave(electroencephalography)signals acquired from a transhumeral amputee,a computationally efficient time domain signal decom-position method based on a series of heuristics was applied to process the acquired signals before feature extraction.The results showed an improvement in motion intent decoding prowess for the proposed time-domain-based signal decomposition across four different classifiers for both the neuromuscular and brain wave signals when compared to the WD and the raw signal.
文摘That flow is the common feature of substance flow and fluid flow is the viewpoint emphasized in the paper. Some notes on fluid mechanics, including the two approaches of fluid flow description, were given. The concepts of the chain and the chain group of product life cycles, which are essential for understanding the specific features of substance flow, were advanced. Taking the specific feature of substance flow into consideration, on the analogy of the two approaches in fluid mechanics, two approaches of substance flow analysis, i.e. L method and E model, were formulated. Illustrative models of steady and unsteady substance flow were sketched by both methods, and comparison between them was made in general.
文摘In this paper,an efficient multi-step scheme is presented based on reproducing kernel Hilbert space(RKHS)theory for solving ordinary stiff differential systems.The solution methodology depends on reproducing kernel functions to obtain analytic solutions in a uniform formfor a rapidly convergent series in the posed Sobolev space.Using the Gram-Schmidt orthogonality process,complete orthogonal essential functions are obtained in a compact field to encompass Fourier series expansion with the help of kernel properties reproduction.Consequently,by applying the standard RKHS method to each subinterval,approximate solutions that converge uniformly to the exact solutions are obtained.For this purpose,several numerical examples are tested to show proposed algorithm’s superiority,simplicity,and efficiency.The gained results indicate that themulti-step RKHSmethod is suitable for solving linear and nonlinear stiffness systems over an extensive duration and giving highly accurate outcomes.
文摘Taking a piece of social interaction as the object of the study,some basic and brief analysis on how meaning is negotiated is offered from both structural and functional perspectives.The potential purpose is to provide readers with a maybe rough but clear presentation of those assorted methods used in conversation analysis.Out of the presentation is developed a possibility for language learners as well as teachers to be more aware of the differences and also the interrelations among these methodological approaches to conversation analysis,which may be of some relevance to teaching practice.