Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w...Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.展开更多
Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damag...Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.展开更多
To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failur...To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.展开更多
In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex str...In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.展开更多
In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applyin...In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applying the eigenvalue perturbation technique and the earthquake spectrum concept,the sensitivities of various topologies of the shell are analyzed,and the optimal topology is determined by taking their symmetries into consideration.The results of this research show that common damper topologies are not effective for all types of responses and recorded earthquakes.The optimal topology identifi ed requires a minimal number of dampers for each type of earthquake record.The displacement control effect of the dynamic responses of the optimal topology is 10% – 20%; the acceleration control effect is also about 10% – 20%; and the axial force control effect is as much as 30% – 45%.Furthermore,the incremental dynamic analysis(IDA) method is used to investigate the stability of the controlled shell.The results show that the dynamic stability of the controlled shell is well preserved when it is vibrated under vibration and is better than the uncontrolled shell.The ultimate load increased by 10% and the elements entered into the plastic stage when the peak acceleration reached 580 Gal,which is 200 Gal larger than the uncontrolled shell.展开更多
Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vect...Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vectors of the structure change remarkably when the values of its physical parameters (mass or stiffness) have a slight change; and the vibration of some modes is mainly restricted in some local areas of the structure. In this paper, two quantitative assessment indexes are introduced that correspond to these two features. The first feature is studied through a numerical example of a RSS, and its induced causes are analyzed by using the perturbation theory. The analysis showed that internally, mode localization is closely related to structural frequencies and externally, slight changes of the physical parameters of the structure cause instability to the RSS. A scaled model experiment to examine mode localization was carried out on a Kiewit single-layer spherical RSS, and both features of mode localization are studied. Eight tests that measured the changes of the physical parameters were carried out in the experiment. Since many modes make their contribution in structural dynamic response, six strong vibration modes were tested at random in the experimental analysis. The change and localization of the six modes are analyzed for each test. The results show that slight changes to the physical parameters are likely to induce remarkable changes and localization of some modal vectors in the RSSs.展开更多
The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standa...The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standards or codes. Therefore, this study investigates the mean and fluctuating wind loads on a cylindrical reticulated shell with a rise-to-span ratio of 0.39 through a series of wind tunnel tests. The characteristics of the wind pressures on the upper and lower surfaces and the net pressures are presented. The results show that the wind direction and another shell structure significantly affect the wind loads on the principal shell. The most unfavorable wind direction is around 30~, whereas the effects of the wind field and the height of the coal stack are small. The surfaces of the shells are divided into nine blocks, and the block mean and fluctuating (rms) pressure coefficients suitable for engineering applications are given as references for wind load codes.展开更多
The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of singl...The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.展开更多
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core ...Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.展开更多
This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series s...This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series solutions for transverse deflection (latticejoint transverse displacement )and force function,weighted means of the trial functions lead to the relations among the coefficients related to the solutions and vibration equ-ation which determines the unknown time function,and then the amplitude -frequeney relations for free vibration and forced vibration due to harmonic force are derived withthe aid of the regular perturbation method and Galerkin procedure,respectively.Nu-merical examples are given as well.展开更多
A finite-element analysis program was developed for the reducing vibration system of viscous damper incorporated into reticulated shells, and a lot of numerical calculations were done on vibration control in reticulat...A finite-element analysis program was developed for the reducing vibration system of viscous damper incorporated into reticulated shells, and a lot of numerical calculations were done on vibration control in reticulated shells. With viscous dampers suitable for reticulated shells designed are developed, and performance tests run for them one K6 reticulated shell model is designed and developed, and a reducing vibration shaking table experiment was conducted with a viscous damper on this shell model. All these come to a conclusion that the reducing vibration system of viscous damper can be applied to reticulated shells.展开更多
By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the sep...By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincare mapping.展开更多
Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent conti...Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent continuum model is adopted and the ap-plication of the principle of virtual work leads to non-linear governing equations and corresponding boundary conditions.展开更多
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal direc...This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.展开更多
Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherica...Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.展开更多
The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based ...The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.展开更多
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper...Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.展开更多
In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a simi...In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.展开更多
In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coup...In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coupling support of double yielding shell”, then gave the design method of inner and outer shells and analyzed the principle and requirements of the support technology by taking the -850 meast belt mad-way of Qujiang coal mine as the background. The field application results show that the support technol- ogy can control the soft rock roadway deformation better under high stress. The displacement between roadway sides was 851 mm, the displacement of the roof was 430 mm, and the displacement of the floor was 510 mm.展开更多
基金the National Natural Science Foundation of China (Grant No. 50608022)the Foundation of National Science and Technology(GrantNo.2006BAJ03B04)
文摘Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.51478335).
文摘Single-layer reticulated shells(SLRSs)find widespread application in the roofs of crucial public structures,such as gymnasiums and exhibition center.In this paper,a new neural-network-based method for structural damage identification in SLRSs is proposed.First,a damage vector index,NDL,that is related only to the damage localization,is proposed for SLRSs,and a damage data set is constructed from NDL data.On the basis of visualization of the NDL damage data set,the structural damaged region locations are identified using convolutional neural networks(CNNs).By cross-dividing the damaged region locations and using parallel CNNs for each regional location,the damaged region locations can be quickly and efficiently identified and the undamaged region locations can be eliminated.Second,a damage vector index,DS,that is related to the damage location and damage degree,is proposed for SLRSs.Based on the damaged region identified previously,a fully connected neural network(FCNN)is constructed to identify the location and damage degree of members.The effectiveness and reliability of the proposed method are verified by considering a numerical case of a spherical SLRS.The calculation results showed that the proposed method can quickly eliminate candidate locations of potential damaged region locations and precisely determine the location and damage degree of members.
基金Sponsored by the National Natural Science Foundation of China(Grant No.90715034)
文摘To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.
基金Natural Science Foundation of China under Grant Nos.50908036&51261120376Natural Science Foundation of Liaoning Province No.201202040
文摘In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applying the eigenvalue perturbation technique and the earthquake spectrum concept,the sensitivities of various topologies of the shell are analyzed,and the optimal topology is determined by taking their symmetries into consideration.The results of this research show that common damper topologies are not effective for all types of responses and recorded earthquakes.The optimal topology identifi ed requires a minimal number of dampers for each type of earthquake record.The displacement control effect of the dynamic responses of the optimal topology is 10% – 20%; the acceleration control effect is also about 10% – 20%; and the axial force control effect is as much as 30% – 45%.Furthermore,the incremental dynamic analysis(IDA) method is used to investigate the stability of the controlled shell.The results show that the dynamic stability of the controlled shell is well preserved when it is vibrated under vibration and is better than the uncontrolled shell.The ultimate load increased by 10% and the elements entered into the plastic stage when the peak acceleration reached 580 Gal,which is 200 Gal larger than the uncontrolled shell.
基金National Natural Science Foundation of China Under Grant No. 50878010
文摘Reticulated shell structures (RSSs) are characterized as cyclically periodic structures. Mistuning of RSSs will induce structural mode localization. Mode localization has the following two features: some modal vectors of the structure change remarkably when the values of its physical parameters (mass or stiffness) have a slight change; and the vibration of some modes is mainly restricted in some local areas of the structure. In this paper, two quantitative assessment indexes are introduced that correspond to these two features. The first feature is studied through a numerical example of a RSS, and its induced causes are analyzed by using the perturbation theory. The analysis showed that internally, mode localization is closely related to structural frequencies and externally, slight changes of the physical parameters of the structure cause instability to the RSS. A scaled model experiment to examine mode localization was carried out on a Kiewit single-layer spherical RSS, and both features of mode localization are studied. Eight tests that measured the changes of the physical parameters were carried out in the experiment. Since many modes make their contribution in structural dynamic response, six strong vibration modes were tested at random in the experimental analysis. The change and localization of the six modes are analyzed for each test. The results show that slight changes to the physical parameters are likely to induce remarkable changes and localization of some modal vectors in the RSSs.
基金Project supported by the Ministry of Science and Technology of China (Nos. SLDRCE09-B-06 and SLDRCE08-A-03)the National Natural Science Foundation of China (Nos. 51178352, 51278368 and 90715040)
文摘The cylindrical reticulated shell structures without side walls, which are normally arranged in pairs, are usually used as dry-coal sheds in a thermal power plant. The wind loads of these shells do not exist in standards or codes. Therefore, this study investigates the mean and fluctuating wind loads on a cylindrical reticulated shell with a rise-to-span ratio of 0.39 through a series of wind tunnel tests. The characteristics of the wind pressures on the upper and lower surfaces and the net pressures are presented. The results show that the wind direction and another shell structure significantly affect the wind loads on the principal shell. The most unfavorable wind direction is around 30~, whereas the effects of the wind field and the height of the coal stack are small. The surfaces of the shells are divided into nine blocks, and the block mean and fluctuating (rms) pressure coefficients suitable for engineering applications are given as references for wind load codes.
基金National Natural Science Foundation of China,Grant No.59895410
文摘The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures.
文摘Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.
文摘This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series solutions for transverse deflection (latticejoint transverse displacement )and force function,weighted means of the trial functions lead to the relations among the coefficients related to the solutions and vibration equ-ation which determines the unknown time function,and then the amplitude -frequeney relations for free vibration and forced vibration due to harmonic force are derived withthe aid of the regular perturbation method and Galerkin procedure,respectively.Nu-merical examples are given as well.
文摘A finite-element analysis program was developed for the reducing vibration system of viscous damper incorporated into reticulated shells, and a lot of numerical calculations were done on vibration control in reticulated shells. With viscous dampers suitable for reticulated shells designed are developed, and performance tests run for them one K6 reticulated shell model is designed and developed, and a reducing vibration shaking table experiment was conducted with a viscous damper on this shell model. All these come to a conclusion that the reducing vibration system of viscous damper can be applied to reticulated shells.
基金Project supported by the Natural Science Foundation of Gansu Province of China(No.3Zs042-B25-006)
文摘By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincare mapping.
文摘Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent continuum model is adopted and the ap-plication of the principle of virtual work leads to non-linear governing equations and corresponding boundary conditions.
文摘This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.
基金Project supported by the National Natural Science Foundation of China (No. 19972024)the Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of Chinathe Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.
基金NationalNaturalScience Foundation ofChina (No. 5 0 2 780 5 4) and the KeyProject of Chinese Ministry of Education(No.10 40 79)
文摘The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore, such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.
基金This work is supported by the National Natural Science Foundation of China(Nos.51578491 and 52238001).
文摘Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.
基金National Natural Science Foundation of China under Grant No.51278008the National Key Research and Development Plan of China under Grant No.2016YFC0701103
文摘In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.
基金supported by the National Natural Science Foundation for Youth (No. 51304200)the China Postdoctoral Science Foundation Project (No. 2013M540477)
文摘In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coupling support of double yielding shell”, then gave the design method of inner and outer shells and analyzed the principle and requirements of the support technology by taking the -850 meast belt mad-way of Qujiang coal mine as the background. The field application results show that the support technol- ogy can control the soft rock roadway deformation better under high stress. The displacement between roadway sides was 851 mm, the displacement of the roof was 430 mm, and the displacement of the floor was 510 mm.