期刊文献+
共找到1,004篇文章
< 1 2 51 >
每页显示 20 50 100
Contourlet watermarking algorithm based on Arnold scrambling and singular value decomposition 被引量:3
1
作者 陈立全 孙晓燕 +1 位作者 卢苗 邵辰 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期386-391,共6页
A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and... A new digital watermarking algorithm based on the contourlet transform is proposed to improve the robustness and anti-attack performances of digital watermarking. The algorithm uses the Arnold scrambling technique and the singular value decomposition (SVD) scheme. The Arnold scrambling technique is used to preprocess the watermark, and the SVD scheme is used to find the best suitable hiding points. After the contourlet transform of the carrier image, intermediate frequency sub-bands are decomposed to obtain the singularity values. Then the watermark bits scrambled in the Arnold rules are dispersedly embedded into the selected SVD points. Finally, the inverse contourlet transform is applied to obtain the carrier image with the watermark. In the extraction part, the watermark can be extracted by the semi-blind watermark extracting algorithm. Simulation results show that the proposed algorithm has better hiding and robustness performances than the traditional contourlet watermarking algorithm and the contourlet watermarking algorithm with SVD. Meanwhile, it has good robustness performances when the embedded watermark is attacked by Gaussian noise, salt- and-pepper noise, multiplicative noise, image scaling and image cutting attacks, etc. while security is ensured. 展开更多
关键词 digital watermarking contourlet transform Arnold scrambling singular value decomposition (svd
下载PDF
The Singular Value Decomposition Analysis between Summer Precipitation in the Dongting Lake Region and the Global Sea Surface Temperature 被引量:1
2
作者 彭莉莉 罗伯良 张超 《Meteorological and Environmental Research》 CAS 2010年第11期28-32,共5页
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation... By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region. 展开更多
关键词 Summer precipitation Sea surface temperature(SST) singular value decomposition(svd) analysis Dongting Lake China
下载PDF
Analysis of heart rate variability based on singular value decomposition entropy 被引量:2
3
作者 李世阳 杨明 +1 位作者 李存岑 蔡萍 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期433-437,共5页
Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using th... Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple. 展开更多
关键词 heart rate variability (HRV) singular value decomposition (svd ENTROPY congestive heart failure (CHF)
下载PDF
Detection and correction of level echo based on generalized S-transform and singular value decomposition 被引量:1
4
作者 ZHU Tianliang WANG Xiaopeng WANG Qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期442-448,共7页
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material... The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S. 展开更多
关键词 echo signal false echo generalized S-transform singular value decomposition(svd) level measurement
下载PDF
The Singular Value Decomposition as a Tool of Investigating Central MHD Instabilities in the HL-1M Tokamak
5
作者 董云波 潘传红 +1 位作者 刘仪 付炳忠 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第3期2307-2312,共6页
A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along ... A variety of strong MHD instabilities are always resulted from MHD activity of Tokamak plasmas. Central MHD instabilities can be observed with pinhole cameras to record soft x-ray (SXR) emission from the plasma along many chords with a high temporal resolution. The investigation of MHD instabilities often necessitates an analysis on spatial-temporal signals. The method of Singular Value Decomposition (SVD) can split such signals into orthogonal spatial and temporal vectors. By this means, the repetition time and the characteristic radius of various MHD phenomena such as sawteeth and snake-like perturbation can be obtained. Moreover, the (1,1) MHD mode is analyzed in great detail by SVD and used to determine the radius of the q = 1 surface. 展开更多
关键词 MHD instabilities soft x-ray (SXR) singular value decomposition (svd)
下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法
6
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
下载PDF
基于SVD-K-means算法的软扩频信号伪码序列盲估计 被引量:1
7
作者 张慧芝 张天骐 +1 位作者 方蓉 罗庆予 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期326-333,共8页
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别... 针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。 展开更多
关键词 软扩频信号 盲估计 奇异值分解 K-MEANS
下载PDF
Development of the Decoupled Discreet-Time Jacobian Eigenvalue Approximation for Situational Awareness Utilizing Open PDC 被引量:1
8
作者 Sean D. Kantra Elham B. Makram 《Journal of Power and Energy Engineering》 2016年第9期21-35,共15页
With the increased number of PMUs in the power grid, effective high speed, realtime methods to ascertain relevant data for situational awareness are needed. Several techniques have used data from PMUs in conjunction w... With the increased number of PMUs in the power grid, effective high speed, realtime methods to ascertain relevant data for situational awareness are needed. Several techniques have used data from PMUs in conjunction with state estimation to assess system stability and event detection. However, these techniques require system topology and a large computational time. This paper presents a novel approach that uses real-time PMU data streams without the need of system connectivity or additional state estimation. The new development is based on the approximation of the eigenvalues related to the decoupled discreet-time power flow Jacobian matrix using direct openPDC data in real-time. Results are compared with other methods, such as Prony’s method, which can be too slow to handle big data. The newly developed Discreet-Time Jacobian Eigenvalue Approximation (DDJEA) method not only proves its accuracy, but also shows its effectiveness with minimal computational time: an essential element when considering situational awareness. 展开更多
关键词 SYNCHROPHASOR PMU Open PDC Power Flow Jacobian Decoupled Discreet-Time Jacobian Approximation singular value decomposition (svd) Prony Analysis
下载PDF
二级减速器故障系统建模及SVD-MMSE劣化评估
9
作者 解开泰 章翔峰 +4 位作者 周建星 余满华 王胜男 姚俊 张旭龙 《振动.测试与诊断》 EI CSCD 北大核心 2024年第3期580-588,624,共10页
为检测故障齿轮劣化程度并进行有效的程度评估,通过有限元法建立含有正常、裂纹和断齿等3种齿轮状态的二级直齿轮减速器系统模型。首先,分别计算3种状态的齿轮时变啮合刚度,并综合考虑轴承支撑刚度,得到了3种不同状态下的轴承振动响应;... 为检测故障齿轮劣化程度并进行有效的程度评估,通过有限元法建立含有正常、裂纹和断齿等3种齿轮状态的二级直齿轮减速器系统模型。首先,分别计算3种状态的齿轮时变啮合刚度,并综合考虑轴承支撑刚度,得到了3种不同状态下的轴承振动响应;其次,引入多元多尺度样本熵(multivariate multiscale sample entropy,简称MMSE)对故障齿轮的劣化程度进行分析;最后,引进奇异值分解(singular value decomposition,简称SVD)算法进行预处理,以达到更好的诊断效果来综合评定故障齿轮生命周期的劣化程度。结果表明:齿轮发生故障时,主要导致时频域信号发生转频调制,时域存在有规律的冲击,频域出现边频带,且分布在输入轴的转频及其倍频和啮频及其倍频处;随着故障程度的增加,劣化越发明显,频率成分也发生改变,致使MMSE值也随之变化,且整体呈单调递减趋势;SVD-MMSE算法能有效地对齿轮故障程度进行判别,降低了噪声对于劣化程度检测准确性的影响。 展开更多
关键词 性能劣化 有限元分析 时变啮合刚度 奇异值分解 多元多尺度样本熵
下载PDF
DeepSVDNet:A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images 被引量:1
10
作者 Anas Bilal Azhar Imran +4 位作者 Talha Imtiaz Baig Xiaowen Liu Haixia Long Abdulkareem Alzahrani Muhammad Shafiq 《Computer Systems Science & Engineering》 2024年第2期511-528,共18页
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ... Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection. 展开更多
关键词 Diabetic retinopathy(DR) fundus images(FIs) support vector machine(SVM) medical image analysis convolutional neural networks(CNN) singular value decomposition(svd) classification
下载PDF
Expansion of the Decoupled Discreet-Time Jacobian Eigenvalue Approximation for Model-Free Analysis of PMU Data
11
作者 Sean D. Kantra Elham B. Makram 《Journal of Power and Energy Engineering》 2017年第6期14-35,共22页
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick... This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data. 展开更多
关键词 SYNCHROPHASOR PMU openPDC Power Flow JACOBIAN Decoupled Discrete-Time JACOBIAN Approximation (DDJEA) singular value decomposition (svd) High Impedance Fault (HIF) Discrete Wavelet Transform (DWT)
下载PDF
基于SVD-Schmidt正交化的压缩感知测量矩阵的优化
12
作者 王月 覃亚丽 《高技术通讯》 CAS 北大核心 2024年第10期1046-1057,共12页
压缩感知(CS)理论中测量矩阵的性能优劣直接影响信号重构性能。为了优化测量矩阵提高其重构性能,本文提出了一种基于奇异值分解-施密特(SVD-Schmidt)正交化的CS测量矩阵优化方法。首先对测量矩阵进行奇异值分解(SVD)并选择最大的奇异值... 压缩感知(CS)理论中测量矩阵的性能优劣直接影响信号重构性能。为了优化测量矩阵提高其重构性能,本文提出了一种基于奇异值分解-施密特(SVD-Schmidt)正交化的CS测量矩阵优化方法。首先对测量矩阵进行奇异值分解(SVD)并选择最大的奇异值替换原来的奇异值形成新的矩阵,同时对其进行施密特正交化,对矩阵的列进行单位化,通过行和列不断循环交替自适应迭代优化得到优化后的测量矩阵。通过一维信号和二维图像的仿真实验验证所提方法的优越性。一方面,本文方法优化的测量矩阵互相关性明显降低;另一方面,实验仿真结果证明了测量矩阵经过优化之后提高了信号重构性能,本文方法重构性能优于现有的SVD法和特征值分解法。 展开更多
关键词 压缩感知(CS) 测量矩阵 互相关性 奇异值分解-施密特(svd-Schmidt)正交化 迭代优化
下载PDF
基于DT-CWT和SVD的变电站直流系统接地故障检测技术研究 被引量:1
13
作者 李能俊 杨海成 +2 位作者 许显科 李书山 高玉玲 《电气传动》 2024年第5期80-85,共6页
变电站直流系统的状态直接关系到变电站的正常运行,为了对变电站直流系统出现的接地故障快速、准确定位,提出了一种双树复小波变换(DT-CWT)和奇异值分解(SVD)相结合的变电站直流系统接地故障检测新方法。该方法首先利用DT-CWT对支路电... 变电站直流系统的状态直接关系到变电站的正常运行,为了对变电站直流系统出现的接地故障快速、准确定位,提出了一种双树复小波变换(DT-CWT)和奇异值分解(SVD)相结合的变电站直流系统接地故障检测新方法。该方法首先利用DT-CWT对支路电流信号进行分解来构建Hankel矩阵;然后对Hankel矩阵进行SVD分解,得到一系列奇异特征值;再次,利用相邻奇异值差值构建奇异值差分谱,通过奇异值差分谱最大峰值来保留有效的奇异值个数;最后,利用保留的奇异值来重构低频信号。算例分析结果表明,该方法能够准确地从支路电流信号中提取出低频交流信号,可以对变电站直流系统接地故障进行准确定位,很大程度上减小对地电容对检测精度的影响。 展开更多
关键词 直流系统 接地故障检测 双树复小波变换 奇异值分解
下载PDF
基于改进TVF-EMD与SVD的轴承故障特征提取
14
作者 石渡江 王文波 《机床与液压》 北大核心 2024年第18期218-229,共12页
滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信... 滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信号分解为一系列本征模态函数(IMF)。为了克服TVF-EMD分解后IMF分量过多的不足,构造包络故障信息能量占比(EREFI)指标,通过EREFI对IMF分量进行降序排列,并依据包络故障信息能量占比递增原则对IMF分量依次进行融合,直至找到最优融合分量。最后,通过SVD对最优融合分量降噪,并提取故障特征。通过仿真信号以及2个实测轴承故障信号对所提方法性能进行了实验验证。实验结果表明:所提方法具有良好的敏感特征筛选融合能力和降噪能力,能更准确提取出轴承早期故障特征,实现故障类型的准确识别。 展开更多
关键词 时变滤波经验模态分解(TVF-EMD) 奇异值降噪(svd) 包络故障信息能量占比(EREFI) 故障诊断 滚动轴承
下载PDF
基于ALIF-SVD的滚动轴承故障诊断
15
作者 吴鑫坤 王师 +1 位作者 刘尚旗 刘慧明 《青岛科技大学学报(自然科学版)》 CAS 2024年第4期114-120,共7页
针对滚动轴承故障信号包含大量噪声信号和迭代滤波算法存在模态混叠等问题,提出一种自适应局部迭代滤波算法与奇异值分解算法相结合的滚动轴承故障诊断新方法。首先采用自适应局部迭代滤波算法对故障信号进行处理得到若干个内禀模态函数... 针对滚动轴承故障信号包含大量噪声信号和迭代滤波算法存在模态混叠等问题,提出一种自适应局部迭代滤波算法与奇异值分解算法相结合的滚动轴承故障诊断新方法。首先采用自适应局部迭代滤波算法对故障信号进行处理得到若干个内禀模态函数,计算出样本熵后设定阈值进行信号重构;然后进行奇异值分解,绘制差分谱曲线;最后根据差分谱中的突变位置进行二次重构,进一步完成降噪。本工作将该方法应用于凯斯西储大学的轴承数据进行验证,实验结果表明该方法解决了迭代滤波算法存在的模态混叠问题以及大量噪声信号冗余问题,体现了该方法在滚动轴承故障诊断中的有效性。 展开更多
关键词 自适应迭代滤波 奇异值分解 样本熵 奇异值差分谱
下载PDF
基于SVD-SUKF的水下机器人电池SOC估计
16
作者 林群锋 高秀晶 +2 位作者 黄红武 曹新城 王艺菲 《船舶工程》 CSCD 北大核心 2024年第5期89-96,共8页
荷电状态(SOC)的准确估计关系到水下机器人的电池使用效率与任务规划。针对传统SOC估计算法存在的准确性、稳定性和鲁棒性不足等问题,提出一种奇异值分解增强的球型无迹卡尔曼滤波(SVD-SUKF)SOC估计算法。建立2阶Thevenin电路模型,并使... 荷电状态(SOC)的准确估计关系到水下机器人的电池使用效率与任务规划。针对传统SOC估计算法存在的准确性、稳定性和鲁棒性不足等问题,提出一种奇异值分解增强的球型无迹卡尔曼滤波(SVD-SUKF)SOC估计算法。建立2阶Thevenin电路模型,并使用遗忘因子递推最小二乘法对模型参数进行在线辨识;在无迹卡尔曼滤波算法的基础上引入球型无迹变换和奇异值分解,避免繁琐的调参过程、减少算法计算量以及解决算法的协方差矩阵非正定问题;采用城市道路循环工况对SVD-SUKF算法进行验证。结果表明:SVD-SUKF算法收敛速度较快,平均绝对值误差为0.006 8、均方根误差为0.005 6,算法相较于扩展卡尔曼滤波和无迹卡尔曼滤波有更高的估计精度、更好的稳定性和更强的鲁棒性。 展开更多
关键词 荷电状态 奇异值分解 球型无迹变换 无迹卡尔曼滤波
下载PDF
基于SVD-IACMD的GIS振动信号去噪算法
17
作者 涂嘉毅 关向雨 +2 位作者 赵俊义 林建港 赖泽楷 《电力工程技术》 北大核心 2024年第6期163-172,共10页
振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇... 振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇异值分解(singular value decomposition,SVD)-改进自适应啁啾模态分解(improve adaptive chirp mode decomposition,IACMD)的现场振动信号降噪算法。该方法首先利用SVD对原始振动信号进行预处理,滤除低频基础振动和测量噪声,其次利用鱼鹰优化算法(osprey optimization algorithm,OOA)对处理后的信号进行自适应模态分解,得到分解后的固有模态(intrinsic mode functions,IMF)分量,再利用互相关系数筛选有效分量重构振动信号。模拟信号与现场信号测试结果表明:与OOA-自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和SVD-变分模态分解(variational mode decomposition,VMD)相比,所提出的SVD-IACMD算法可以去除基础振动、测量噪声和环境噪声,保留GIS本体振动的基频和谐波分量,为GIS现场抗干扰振动检测和机械缺陷诊断提供技术支持。 展开更多
关键词 气体绝缘开关设备(GIS) 信号降噪 奇异值分解(svd) 改进自适应啁啾模态分解(IACMD) 鱼鹰优化算法(OOA) 机械振动
下载PDF
基于K-SVD联合参数自适应TQWT的齿轮箱故障诊断
18
作者 刘庆友 娄志宁 赵新维 《轻工机械》 CAS 2024年第6期65-72,共8页
针对齿轮箱信号在强噪声背景下故障特征提取难的问题,课题组提出了一种K-均值奇异值分解(K-means singular value decomposition,K-SVD)联合参数自适应可调品质因子小波变换(tunable Q-factor wavelet transform,TQWT)的齿轮箱故障诊断... 针对齿轮箱信号在强噪声背景下故障特征提取难的问题,课题组提出了一种K-均值奇异值分解(K-means singular value decomposition,K-SVD)联合参数自适应可调品质因子小波变换(tunable Q-factor wavelet transform,TQWT)的齿轮箱故障诊断方法。利用K-SVD稀疏表示齿轮箱故障信号,重构信号后去除噪声;针对TQWT对噪声鲁棒性不强且参数过度依赖人为选择的问题,结合齿轮箱早期故障信号的冲击性与周期性特征,提出了自相关峭谱积指标,以自相关峭谱积为优化指标对TQWT参数进行自适应选择;根据自相关峭谱积指标对子带进行筛选,对选出的子带进行重构,通过包络谱分析得到齿轮箱故障特征信息。仿真和试验结果表明所提出的诊断方法能有效提取低转速、强噪声背景下的齿轮箱故障特征。 展开更多
关键词 故障诊断 齿轮箱 K-均值奇异值分解 可调品质因子小波变换 自相关峭谱积
下载PDF
Application of Singular Value Decomposition(SVD)to the Extraction of Gravity Anomalies Associated with Ag-Pb-Zn-W Polymetallic Mineralization in the Bozhushan Ore Field,Southwestern China 被引量:4
19
作者 Lingfen Guo Yongqing Chen Binbin Zhao 《Journal of Earth Science》 SCIE CAS CSCD 2021年第2期310-317,共8页
The Bozhushan Ore Field,located at the western margin of the South China Block,is an important area for Ag-Pb-Zn-W polymetallic mineralization which may be associated with the Late Cretaceous granitic magmaism.In this... The Bozhushan Ore Field,located at the western margin of the South China Block,is an important area for Ag-Pb-Zn-W polymetallic mineralization which may be associated with the Late Cretaceous granitic magmaism.In this paper,the singular value decomposition(SVD)was effectively applied to decompose gravity data at scale of 1:50000 within the Bozhushan Ore Field to extract deep ore-finding information.Two gravity anomaly images displaying different scales of the ore-controlling factors were obtained.(1)The low-pass filtered image may reflect the deeply buried geological structures,hidden intrusions and concealed ore bodies.The negative gravity anomaly may reflect the overall distribution of granite bodies in the Bozhushan Ore Field.One negative gravity anomaly area may correspond to the exposed part of the Baozhushan granitic intrusion and the other corresponds to the concealed part of the granitic intrusion.The granitic intrusions are the main ore-controlling factors in this ore district.(2)The band-pass filtered image depicts the shallow concealed geological structures and geological bodies within this study area.There are two obvious negative gravity anomalies,which may be created by the hidden granites at different depths at both northwestern and southeastern sides of the exposed granitic intrusion.Thus the two negative gravity anomalies are favorable prospecting areas for various type of polymetallic ore deposits at depth.The gravity anomalies extracted by using the SVD exactly reflect the distribution of the ore deposits,structures and intrusions,which will give new insights for further mineral exploration in the study area. 展开更多
关键词 singular value decomposition(svd) gravity anomaly Ag-Pb-Zn-W polymetallic deposits Bozhushan granitic complex southwestern China
原文传递
高速列车万向轴动不平衡检测的EEMD-Hankel-SVD方法 被引量:9
20
作者 丁建明 林建辉 赵洁 《机械工程学报》 EI CAS CSCD 北大核心 2015年第10期143-151,159,共10页
针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD... 针对聚合经验模式分解(Ensemble empirical model decomposition,EEMD)的等效滤波特性依然存在模式分量间频带重叠较大的根本缺陷,提出一种高速列车万向轴动不平衡动态检测的新方法。该方法的核心是对万向节安装机座的振动信号进行EEMD分解得到基本模式分量,应用基本模式分量信号来构造Hankel矩阵,对该矩阵进行正交化奇异值(Singular value decomposition,SVD)分解,以奇异值关键叠层作为奇异值的选择准则对信号进行重构,应用重构信号的傅里叶谱来检测高速列车万向轴的动不平衡,消除EEMD分解模式频带重叠对故障特征的淹没和混淆效应,提高了谱的清晰度,凸显了故障特征。应用万向轴动不平衡试验数据对该方法进行试验验证,结果表明,该方法能够有效检测万向轴动不平衡引起的故障特征和万向轴的固有振动特征,与纯EEMD方法相比,该方法在谱的清晰度和故障表征力上得到了显著提高。 展开更多
关键词 高速列车 万向轴动不平衡 聚合经验模式分解(Ensemble empirical model decomposition EEMD) HANKEL矩阵 正交化奇异值(singular value decomposition svd) 动态检测
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部