In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomp...In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.展开更多
Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very ...Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very useful for grayscale secret images.In this method,the secret image decomposes in three parts based on the pixel’s threshold value.The division of the color image into three parts is very easy based on the color channel but in the grayscale image,it is difficult to implement.The proposed image scrambling method is implemented in image steganography using discrete wavelet transform(DWT),singular value decomposition(SVD),and sorting function.There is no visual difference between the stego image and the cover image.The extracted secret image is also similar to the original secret image.The proposed algorithm outcome is compared with the existed image steganography techniques.The comparative results show the strength of the proposed technique.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficien...Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficiency is low.In this work,in order to improve the robustness and reduce the computational cost,a DCS-SOMP-SVD compressed sensing method,which combines the distributed compressed sensing using simultaneously orthogonal matching pursuit(DCS-SOMP)and singular value decomposition(SVD)is proposed.The performance of the DCS-SOMP-SVD is studied through both simulation and experiment.In the simulation,the locating results of the DCS-SOMP-SVD method are compared with the wideband BP method and the DCS-SOMP method.In terms of computational efficiency,the proposed method is as efficient as the DCS-SOMP method and more efficient than the wideband BP method.In terms of locating accuracy,the proposed method can still locate all sources when the signal to noise ratio(SNR)is−20 dB,while the wideband BP method and the DCS-SOMP method can only locate all sources when the SNR is higher than 0 dB.The performance of the proposed method can be improved by expanding the frequency range.Moreover,there is no extra source in the maps of the proposed method,even though the target sparsity is overestimated.Finally,a gas leak experiment is conducted to verify the feasibility of the DCS-SOMP-SVD method in the practical engineering environment.The experimental results show that the proposed method can locate both two leak sources in different frequency ranges.This research proposes a DCS-SOMP-SVD method which has sufficient robustness and low computational cost for wideband acoustic imaging.展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
为在大数据环境下处理高维矩阵和应用奇异值分解提供更高效的解决方案,从而加速数据分析和处理速度,通过研究随机投影以及Krylov子空间投影理论下关于高维矩阵求解特征值特征向量(奇异值奇异向量)问题,分别总结了6种高效计算方法并对其...为在大数据环境下处理高维矩阵和应用奇异值分解提供更高效的解决方案,从而加速数据分析和处理速度,通过研究随机投影以及Krylov子空间投影理论下关于高维矩阵求解特征值特征向量(奇异值奇异向量)问题,分别总结了6种高效计算方法并对其相关应用研究进行对比分析。结果表明,在谱聚类的应用上,通过降低核心步骤SVD(Singular Value Decomposition)的复杂度,使优化后的算法与原始谱聚类算法的精度相近,但大大缩短了运行时间,在1200维的数据下计算速度相较原算法快了10倍以上。同时,该方法应用于图像压缩领域,能有效地提高原有算法的运行效率,在精度不变的情况下,运行效率得到了1~5倍的提升。展开更多
针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更...针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.展开更多
为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SV...为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SVD压缩量化的数字图像盲水印算法。该算法对载体图像进行分块,对每一分块实施离散小波变换(discrete wavelet transform,DWT),以及对变换后的近似部分系数进行SVD分解,使用μ律压缩函数压缩分解后的最大奇异值,用QIM的方法嵌入二值水印。算法只用到了最大奇异值,可以盲提取水印,消除因传输原始载体图像产生的不安全性,μ律压缩技术也减小了嵌入水印对原始载体图像的扰乱。仿真实验结果表明,该算法保持了较高的透明性,并对高斯噪声、中值滤波、联合图像专家小组(joint photographic experts group,JPEG)压缩、缩放等常见攻击具有更强的鲁棒性。展开更多
研究连续Morlet小波变换矩阵行矢量的线性相关性,这种相关性使得连续Morlet小波变换的结果存在很大的冗余,利用奇异值分解(Singular value decomposition,SVD)来压缩这种冗余性。理论分析表明,SVD技术可以将连续Morlet小波变换矩阵的信...研究连续Morlet小波变换矩阵行矢量的线性相关性,这种相关性使得连续Morlet小波变换的结果存在很大的冗余,利用奇异值分解(Singular value decomposition,SVD)来压缩这种冗余性。理论分析表明,SVD技术可以将连续Morlet小波变换矩阵的信息完全压缩到少数的非零奇异值及其对应的正交奇异矢量中,分析压缩前后数据量的比例,证实矩阵维数越大,压缩效果越好。研究确定性信号和噪声的连续Morlet小波变换结果的奇异值的分布特点,发现确定性信号的有效奇异值数量由信号中的频率数量决定,有效奇异值之后的奇异值会很快地下降到零,而噪声的奇异值序列的变化比较均匀,下降速度比较缓慢。利用确定性信号和噪声奇异值的这种差异,可以实现对含噪信号的连续Morlet小波变换结果的提纯,只要选择前面合适的奇异值进行SVD重构,大部分噪声奇异值的信息会被抛弃,因而可在很大程度上消除噪声对连续Morlet小波变换结果的影响。展开更多
文摘In order to overcome the problem that the CUR matrix decomposition algorithm loses a large amount of information when compressing images, the quality of reconstructed images is not high, we propose a CUR matrix decomposition algorithm based on standard deviation sampling. Because of retaining more image information, the reconstructed image quality is higher under the same compression ratio. At the same time, in order to further reduce the amount of image information lost during the sampling process of the CUR matrix decomposition algorithm, we propose the SVD-CUR algorithm. The experimental results verify that our algorithm can achieve high image compression efficiency, and also demonstrate the high precision and robustness of CUR matrix decomposition algorithm in dealing with low rank sparse matrix data.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very useful for grayscale secret images.In this method,the secret image decomposes in three parts based on the pixel’s threshold value.The division of the color image into three parts is very easy based on the color channel but in the grayscale image,it is difficult to implement.The proposed image scrambling method is implemented in image steganography using discrete wavelet transform(DWT),singular value decomposition(SVD),and sorting function.There is no visual difference between the stego image and the cover image.The extracted secret image is also similar to the original secret image.The proposed algorithm outcome is compared with the existed image steganography techniques.The comparative results show the strength of the proposed technique.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金Supported by National Natural Science Foundation of China(Grant Nos.51675425,52075441)Shaanxi Provincial Key Research Program Project of China(Grant No.2020ZDLGY06-09)+1 种基金Dongguan Municipal Social Science and Technology Development(key)Project of China(Grant No.20185071021600)Science and Technology on Micro-system Laboratory Foundation of China(Grant No.6142804200405).
文摘Wideband acoustic imaging,which combines compressed sensing(CS)and microphone arrays,is widely used for locating acoustic sources.However,the location results of this method are unstable,and the computational efficiency is low.In this work,in order to improve the robustness and reduce the computational cost,a DCS-SOMP-SVD compressed sensing method,which combines the distributed compressed sensing using simultaneously orthogonal matching pursuit(DCS-SOMP)and singular value decomposition(SVD)is proposed.The performance of the DCS-SOMP-SVD is studied through both simulation and experiment.In the simulation,the locating results of the DCS-SOMP-SVD method are compared with the wideband BP method and the DCS-SOMP method.In terms of computational efficiency,the proposed method is as efficient as the DCS-SOMP method and more efficient than the wideband BP method.In terms of locating accuracy,the proposed method can still locate all sources when the signal to noise ratio(SNR)is−20 dB,while the wideband BP method and the DCS-SOMP method can only locate all sources when the SNR is higher than 0 dB.The performance of the proposed method can be improved by expanding the frequency range.Moreover,there is no extra source in the maps of the proposed method,even though the target sparsity is overestimated.Finally,a gas leak experiment is conducted to verify the feasibility of the DCS-SOMP-SVD method in the practical engineering environment.The experimental results show that the proposed method can locate both two leak sources in different frequency ranges.This research proposes a DCS-SOMP-SVD method which has sufficient robustness and low computational cost for wideband acoustic imaging.
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。
文摘为在大数据环境下处理高维矩阵和应用奇异值分解提供更高效的解决方案,从而加速数据分析和处理速度,通过研究随机投影以及Krylov子空间投影理论下关于高维矩阵求解特征值特征向量(奇异值奇异向量)问题,分别总结了6种高效计算方法并对其相关应用研究进行对比分析。结果表明,在谱聚类的应用上,通过降低核心步骤SVD(Singular Value Decomposition)的复杂度,使优化后的算法与原始谱聚类算法的精度相近,但大大缩短了运行时间,在1200维的数据下计算速度相较原算法快了10倍以上。同时,该方法应用于图像压缩领域,能有效地提高原有算法的运行效率,在精度不变的情况下,运行效率得到了1~5倍的提升。
文摘针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.
文摘为了解决奇异值分解(singular value decomposition,SVD)算法提取水印时需要原始载体图像的缺陷,以及量化索引调制(quantization index modulation,QIM)均匀量化不适用于非均匀信号的问题,通过引入μ律压缩技术,提出一种新的基于DWT-SVD压缩量化的数字图像盲水印算法。该算法对载体图像进行分块,对每一分块实施离散小波变换(discrete wavelet transform,DWT),以及对变换后的近似部分系数进行SVD分解,使用μ律压缩函数压缩分解后的最大奇异值,用QIM的方法嵌入二值水印。算法只用到了最大奇异值,可以盲提取水印,消除因传输原始载体图像产生的不安全性,μ律压缩技术也减小了嵌入水印对原始载体图像的扰乱。仿真实验结果表明,该算法保持了较高的透明性,并对高斯噪声、中值滤波、联合图像专家小组(joint photographic experts group,JPEG)压缩、缩放等常见攻击具有更强的鲁棒性。
文摘研究连续Morlet小波变换矩阵行矢量的线性相关性,这种相关性使得连续Morlet小波变换的结果存在很大的冗余,利用奇异值分解(Singular value decomposition,SVD)来压缩这种冗余性。理论分析表明,SVD技术可以将连续Morlet小波变换矩阵的信息完全压缩到少数的非零奇异值及其对应的正交奇异矢量中,分析压缩前后数据量的比例,证实矩阵维数越大,压缩效果越好。研究确定性信号和噪声的连续Morlet小波变换结果的奇异值的分布特点,发现确定性信号的有效奇异值数量由信号中的频率数量决定,有效奇异值之后的奇异值会很快地下降到零,而噪声的奇异值序列的变化比较均匀,下降速度比较缓慢。利用确定性信号和噪声奇异值的这种差异,可以实现对含噪信号的连续Morlet小波变换结果的提纯,只要选择前面合适的奇异值进行SVD重构,大部分噪声奇异值的信息会被抛弃,因而可在很大程度上消除噪声对连续Morlet小波变换结果的影响。