An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT...An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemirovski’s technique and prove the convergence. Our preliminary computational results are very favorable.展开更多
Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.Th...Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.The existing all-qubit QSVT algorithm demands lots of ancillary qubits,remaining a huge challenge for realization on nearterm intermediate-scale quantum computers.In this paper,we propose a hybrid QSVT(HQSVT) algorithm utilizing both discrete variables(DVs) and continuous variables(CVs).In our algorithm,raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations.Our algorithm requires O [log(MN)] qubits with0(1) qumodes and totally performs 0(1) operations,which significantly reduces the space and runtime consumption.展开更多
针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数...针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.展开更多
Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very ...Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very useful for grayscale secret images.In this method,the secret image decomposes in three parts based on the pixel’s threshold value.The division of the color image into three parts is very easy based on the color channel but in the grayscale image,it is difficult to implement.The proposed image scrambling method is implemented in image steganography using discrete wavelet transform(DWT),singular value decomposition(SVD),and sorting function.There is no visual difference between the stego image and the cover image.The extracted secret image is also similar to the original secret image.The proposed algorithm outcome is compared with the existed image steganography techniques.The comparative results show the strength of the proposed technique.展开更多
奇异值分解(Singular value decomposition,SVD)作为一种有效的信号降噪方法广泛应用于旋转机械振动信号周期性瞬态冲击提取中。传统SVD以能量为导向,无法提取出能量较弱但含故障信息丰富的奇异分量(Singular Component,SC)。为此,提出...奇异值分解(Singular value decomposition,SVD)作为一种有效的信号降噪方法广泛应用于旋转机械振动信号周期性瞬态冲击提取中。传统SVD以能量为导向,无法提取出能量较弱但含故障信息丰富的奇异分量(Singular Component,SC)。为此,提出加权firm阈值奇异值分解(Weighted Firm Singular Value Decomposition,WFSVD)方法。该方法首先引入平方包络谱峭度(Squared Envelope Spectrum Kurtosis,SESK)作为量化故障敏感度的指标,以评估各个SC所含故障信息的丰富程度;其次,将SESK作为权重因子引入到基于firm阈值的SC去噪中,设计基于SESK的加权firm阈值SC去噪策略;最后,重构信号,实现信号降噪并有效提取故障特征。对于仿真信号与试验数据的分析验证了所提方法在周期性微弱瞬态冲击提取及旋转机械故障诊断中的有效性。展开更多
针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更...针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.展开更多
根据人眼对彩色图像不同颜色通道的敏感度不同,利用掩蔽效应对人眼感知立体图像质量产生的影响,提出了一种基于视觉阈值分析和通道融合的彩色图像客观质量评价方法。利用人眼视觉阈值确定立体图像的失真是否在人眼可察觉的范围,若失真...根据人眼对彩色图像不同颜色通道的敏感度不同,利用掩蔽效应对人眼感知立体图像质量产生的影响,提出了一种基于视觉阈值分析和通道融合的彩色图像客观质量评价方法。利用人眼视觉阈值确定立体图像的失真是否在人眼可察觉的范围,若失真程度小于视觉掩蔽阈值,则认为没有失真。利用原始和失真彩色图像RGB三通道各自左视点差值图和右视点差值图的奇异值与人眼视觉掩蔽阈值图的奇异值距离来衡量失真图像左右视点图像的质量。原始和失真图像对的绝对差图之差值图像和原始图像对的双目恰可察觉失真阈值图之间的奇异值距离被用于评价失真立体图像的深度感知好坏。不同失真类型下,左右视点质量融合以及左右视点评价和深度感知评价的融合其加权权值不同。对JPEG压缩、JPEG2000压缩、高斯白噪声、高斯模糊和H.264编码5种不同程度失真的312幅退化图像进行了测试,结果显示本文方法与主观感知有较好的一致性,总体CC(Pearson Linear Correlation Coefficient)达到0.94,总体SROCC(Spearman Rank Order Correlation Coefficient)达到0.94,整体均方根误差(RMSE)控制在5.9以内。展开更多
文摘An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemirovski’s technique and prove the convergence. Our preliminary computational results are very favorable.
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant Nos.61521001,12074179,and 11890704)。
文摘Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.The existing all-qubit QSVT algorithm demands lots of ancillary qubits,remaining a huge challenge for realization on nearterm intermediate-scale quantum computers.In this paper,we propose a hybrid QSVT(HQSVT) algorithm utilizing both discrete variables(DVs) and continuous variables(CVs).In our algorithm,raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations.Our algorithm requires O [log(MN)] qubits with0(1) qumodes and totally performs 0(1) operations,which significantly reduces the space and runtime consumption.
文摘针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Digital image steganography technique based on hiding the secret data behind of cover image in such a way that it is not detected by the human visual system.This paper presents an image scrambling method that is very useful for grayscale secret images.In this method,the secret image decomposes in three parts based on the pixel’s threshold value.The division of the color image into three parts is very easy based on the color channel but in the grayscale image,it is difficult to implement.The proposed image scrambling method is implemented in image steganography using discrete wavelet transform(DWT),singular value decomposition(SVD),and sorting function.There is no visual difference between the stego image and the cover image.The extracted secret image is also similar to the original secret image.The proposed algorithm outcome is compared with the existed image steganography techniques.The comparative results show the strength of the proposed technique.
文摘针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.
文摘根据人眼对彩色图像不同颜色通道的敏感度不同,利用掩蔽效应对人眼感知立体图像质量产生的影响,提出了一种基于视觉阈值分析和通道融合的彩色图像客观质量评价方法。利用人眼视觉阈值确定立体图像的失真是否在人眼可察觉的范围,若失真程度小于视觉掩蔽阈值,则认为没有失真。利用原始和失真彩色图像RGB三通道各自左视点差值图和右视点差值图的奇异值与人眼视觉掩蔽阈值图的奇异值距离来衡量失真图像左右视点图像的质量。原始和失真图像对的绝对差图之差值图像和原始图像对的双目恰可察觉失真阈值图之间的奇异值距离被用于评价失真立体图像的深度感知好坏。不同失真类型下,左右视点质量融合以及左右视点评价和深度感知评价的融合其加权权值不同。对JPEG压缩、JPEG2000压缩、高斯白噪声、高斯模糊和H.264编码5种不同程度失真的312幅退化图像进行了测试,结果显示本文方法与主观感知有较好的一致性,总体CC(Pearson Linear Correlation Coefficient)达到0.94,总体SROCC(Spearman Rank Order Correlation Coefficient)达到0.94,整体均方根误差(RMSE)控制在5.9以内。