Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, ...Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible.展开更多
The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b...The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.展开更多
Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime,...Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.展开更多
The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geom...The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geomagnetic observed field has high transient noise and high energy content (i.e.geomagnetic signal interfered by human activity magnetic band) and when the signal analysis action is oriented to the detection of magnetic sources characterized by quasi-punctiform size, low energy level and kinetic mechanical status (i.e.uw armed terrorist). The paper shows the results obtained introducing two new informative spectral parameters: the informative capability “C” and the enhanced informative capability “eC”. These parameters are depending on the comparison of the energy of the target signal with total field energy and they are characteristics of each elementary signal. C classifies the energy of the spectrum in two metrological bands: elementary signal informative energy EI (band or single signal) and passive energy EP. This metrological classification of the energy overtakes the concept of noise: each signal is part of the noise band when it is not under observation and becomes out of the band when it is under observation (numerical observation→computation). C (and eC) allows to compute the value of the “visibility” of the informative signals in a high energy geomagnetic field (or spectrum). C is a fundamental parameter for the evaluation of the effectiveness of singularity magnetic metrology in the passive detection of small magnetic sources in high noised magnetic field.展开更多
To sample non-bandlimited impulse signals, an extremely high-sampling rate analog-todigital converters (ADC) is required. Such an ADC is very difficult to be implemented with present semiconductor technology. In thi...To sample non-bandlimited impulse signals, an extremely high-sampling rate analog-todigital converters (ADC) is required. Such an ADC is very difficult to be implemented with present semiconductor technology. In this paper, a novel sampling and reconstruction method for impulse signals is proposed. The required sampling rate of the proposed method is close to the signal innovation rate, which is much lower than the Nyquist rate in conventional Shannon sampling theory. Analysis and simulation results show that the proposed method can achieve very good reconstruction performance in the presence of noise.展开更多
This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) dire...This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula...目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。展开更多
针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value medi...针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value median decomposition,SVMD)相结合。首先,考虑到旋转机械的故障特征,对轴承故障信号采用1步长方法构造Hankel矩阵;其次,考虑到信号的协方差矩阵对于信号自相关去噪的优势,进而计算Hankel的协方差矩阵并进行空间重构;再次,采用奇异值差分谱方法对重构后的协方差矩阵信号进行分解处理而实现初步降噪,通过奇异值中值分解方法对其进行分解和筛选处理而完成二次降噪,并根据处理后信号的频谱包络,实现轴承故障特征信息的提取;最后,通过滚动轴承仿真数据分析得出,所提方法能够有效提取出噪声信号的故障特征及其谐波,实现不同轴承故障类型特征的有效提取,为滚动轴承故障复杂信号处理和诊断提供了一种新的方法和途径。展开更多
基金This project is supported by National Natural Science Foundation of China (No.59905011, 60275041).
文摘Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible.
文摘The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.
基金Science Foundation of Educational Commission of Fujian Province of China (Grant NO:JAO04238)
文摘Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.
文摘The paper discusses the quantitative definition of the s/n (signal to noise ratio) by means of new computational parameters derived (and computed) by the Fourier analysis. The theme is of great relevance when the geomagnetic observed field has high transient noise and high energy content (i.e.geomagnetic signal interfered by human activity magnetic band) and when the signal analysis action is oriented to the detection of magnetic sources characterized by quasi-punctiform size, low energy level and kinetic mechanical status (i.e.uw armed terrorist). The paper shows the results obtained introducing two new informative spectral parameters: the informative capability “C” and the enhanced informative capability “eC”. These parameters are depending on the comparison of the energy of the target signal with total field energy and they are characteristics of each elementary signal. C classifies the energy of the spectrum in two metrological bands: elementary signal informative energy EI (band or single signal) and passive energy EP. This metrological classification of the energy overtakes the concept of noise: each signal is part of the noise band when it is not under observation and becomes out of the band when it is under observation (numerical observation→computation). C (and eC) allows to compute the value of the “visibility” of the informative signals in a high energy geomagnetic field (or spectrum). C is a fundamental parameter for the evaluation of the effectiveness of singularity magnetic metrology in the passive detection of small magnetic sources in high noised magnetic field.
基金supported by the National Natural Science Foundation of Chinaunder Grant No 60496313
文摘To sample non-bandlimited impulse signals, an extremely high-sampling rate analog-todigital converters (ADC) is required. Such an ADC is very difficult to be implemented with present semiconductor technology. In this paper, a novel sampling and reconstruction method for impulse signals is proposed. The required sampling rate of the proposed method is close to the signal innovation rate, which is much lower than the Nyquist rate in conventional Shannon sampling theory. Analysis and simulation results show that the proposed method can achieve very good reconstruction performance in the presence of noise.
基金supported by the National Natural Science Foundation of China (10776040 60602057)+4 种基金Program for New Century Excellent Talents in University (NCET)the Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003)the Natural Science Foundation of Chongqing Science and Technology Commission (CSTC2009BB2287)the Natural Science Foundation of Chongqing Municipal Education Commission (KJ060509 KJ080517)
文摘This paper presents an approach of singular value de- composition plus digital phase lock loop to solve the difficult problem of blind pseudo-noise (PN) sequence estimation in low signal to noise ratios (SNR) direct sequence spread spectrum (DS-SS) signals with residual carrier. This approach needs some given parameters, such as the period and code rate of PN sequence. The received signal is firstly sampled and divided into non-overlapping signal vectors according to a temporal window, whose duration is two periods of PN sequence. An autocorrelation matrix is then computed and accumulated by those signal vectors one by one. The PN sequence with residual carrier can be estimated by the principal eigenvector of the autocorrelation matrix. Further more, a digital phase lock loop is used to process the estimated PN sequence, it estimates and tracks the residual carrier and removes the residual carrier in the end. Theory analysis and computer simulation results show that this approach can effectively realize the PN sequence blind estimation from the input DS-SS signals with residual carrier in lower SNR.
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。
文摘目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。
文摘针对滚动轴承微弱故障特征信息易受噪声干扰提取困难的问题,提出一种新的滚动轴承故障特征提取方法,即协方差矩阵(covariance matrix,CM)、奇异值差分谱(singular value difference spectrum,SVDS)和奇异值中值分解(singular value median decomposition,SVMD)相结合。首先,考虑到旋转机械的故障特征,对轴承故障信号采用1步长方法构造Hankel矩阵;其次,考虑到信号的协方差矩阵对于信号自相关去噪的优势,进而计算Hankel的协方差矩阵并进行空间重构;再次,采用奇异值差分谱方法对重构后的协方差矩阵信号进行分解处理而实现初步降噪,通过奇异值中值分解方法对其进行分解和筛选处理而完成二次降噪,并根据处理后信号的频谱包络,实现轴承故障特征信息的提取;最后,通过滚动轴承仿真数据分析得出,所提方法能够有效提取出噪声信号的故障特征及其谐波,实现不同轴承故障类型特征的有效提取,为滚动轴承故障复杂信号处理和诊断提供了一种新的方法和途径。