期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Numerical Method for Singular Boundary-Value Problems
1
作者 Abdalkaleg Hamad M. Tadi Miloje Radenkovic 《Journal of Applied Mathematics and Physics》 2014年第9期882-887,共6页
This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are i... This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method. 展开更多
关键词 singular boundary-value problem singularly PERTURBED BOUNDARY VALUE problem
下载PDF
Numerical Solution of Singularly Perturbed Two-Point Boundary Value Problem via Liouville-Green Transform
2
作者 Hradyesh Kumar Mishra Sonali Saini 《American Journal of Computational Mathematics》 2013年第1期1-5,共5页
In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform i... In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution. 展开更多
关键词 singular Perturbation Ordinary Differential Equation BOUNDARY Layer two-point BOUNDARY Value problem Liouville-Green TRANSFORM
下载PDF
Precise integration method for solving singular perturbation problems 被引量:1
3
作者 富明慧 张文志 S.V.SHESHENIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第11期1463-1472,共10页
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr... This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method. 展开更多
关键词 singular perturbation problem first-order ordinary differential equation two-point boundary-value problem precise integration method reduction method
下载PDF
Finite-Difference Methods for a Class of Strongly Nonlinear Singular Perturbation Problems
4
作者 Relja Vulanovi 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期235-244,共10页
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the... The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes. 展开更多
关键词 boundary-value problem singular perturbation finite differences Bakhvalov and piecewise equidistant meshes L^1 stability
下载PDF
A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations
5
作者 I.G.Ameen N.A.Elkot +2 位作者 M.A.Zaky A.S.Hendy E.H.Doha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期21-41,共21页
We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the p... We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme. 展开更多
关键词 Spectral collocation method weakly singular integral equations two-point boundary value problems convergence analysis
下载PDF
Coupling of high order multiplication perturbation method and reduction method for variable coefcient singular perturbation problems
6
作者 张文志 黄培彦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第1期97-104,共8页
Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly pertur... Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient. 展开更多
关键词 high order multiplication perturbation method (HOMPM) reductionmethod variable coefficient singular perturbation problem two-point boundary valueproblem
下载PDF
High order multiplication perturbation method for singular perturbation problems
7
作者 张文志 黄培彦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1383-1392,共10页
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula... This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision. 展开更多
关键词 singular perturbation problem (SPP). high order multiplication perturba-tion method two-point boundary value problem boundary layer
下载PDF
Approximate Solution of the Singular-Perturbation Problem on Chebyshev-Gauss Grid
8
作者 Mustafa Gulsu Yalcin Ozturk 《American Journal of Computational Mathematics》 2011年第4期209-218,共10页
Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do n... Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given. 展开更多
关键词 singular Perturbation problems two-point Boundary Value problems The Shifted Chebyshev Polynomials Approximation Method Matrix Method
下载PDF
Optimal L_∞ Estimates for Galerkin Methods for Nonlinear Singular Two-point Boundary Value Problems
9
作者 Xu ZHANG Zhong-ci SHI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第3期719-728,共10页
In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining fu... In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions. 展开更多
关键词 singular two-point boundary value problems symmetric Galerkin method maximum norm error estimate superconvergence local mesh refinement
原文传递
Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions
10
作者 HAO Zhiwei FUJIMOTO Kenji ZHANG Qiuhua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第2期261-288,共28页
For a nonlinear finite time optimal control problem,a systematic numerical algorithm to solve the Hamilton-Jacobi equation for a generating function is proposed in this paper.This algorithm allows one to obtain the Ta... For a nonlinear finite time optimal control problem,a systematic numerical algorithm to solve the Hamilton-Jacobi equation for a generating function is proposed in this paper.This algorithm allows one to obtain the Taylor series expansion of the generating function up to any prescribed order by solving a sequence of first order ordinary differential equations recursively.Furthermore,the coefficients of the Taylor series expansion of the generating function can be computed exactly under a certain technical condition.Once a generating function is found,it can be used to generate a family of optimal control for different boundary conditions.Since the generating function is computed off-line,the on-demand computational effort for different boundary conditions decreases a lot compared with the conventional method.It is useful to online optimal trajectory generation problems.Numerical examples illustrate the effectiveness of the proposed algorithm. 展开更多
关键词 Generating functions Hamilton-Jacobi equations optimal control Taylor series expansion two-point boundary-value problems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部