A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless t...A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved.展开更多
By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the expe...By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.展开更多
Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet ba...Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet based on a spatial six-bar 4R2C(R and C denote revolute and cylindric joints, respectively) mechanism is proposed. It can move along a line or a curve by three walking modes that are dwell adjustment mode, limit position adjustment mode and any position adjustment mode. Kinematic, gait planning and stability analyses are performed respectively, and a prototype is developed. Lastly, a potential application is considered and two manipulating modes(sphere and cylinder manipulating modes) are carried out. This interesting mechanism feathering its single dosed-chain structure and unique work performance is expected to motivate the configuration creation of biped robots.展开更多
Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method...Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.展开更多
Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniou...Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.展开更多
This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.Th...This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.展开更多
基金supported by National Natural Science Foundation of China(Grant No.50975186)
文摘A closed-form solution can be obtained for kinematic analysis of spatial mechanisms by using analytical method.However,extra solutions would occur when solving the constraint equations of mechanism kinematics unless the constraint equations are established with a proper method and the solving approach is appropriate.In order to obtain a kinematic solution of the spherical Stephenson-III six-bar mechanism,spherical analytical theory is employed to construct the constraint equations.Firstly,the mechanism is divided into a four-bar loop and a two-bar unit.On the basis of the decomposition,vectors of the mechanism nodes are derived according to spherical analytical theory and the principle of coordinate transformation.Secondly,the structural constraint equations are constructed by applying cosine formula of spherical triangles to the top platform of the mechanism.Thirdly,the constraint equations are solved by using Bezout’ s elimination method for forward analysis and Sylvester’ s resultant elimination method for inverse kinematics respectively.By the aid of computer symbolic systems,Mathematica and Maple,symbolic closed-form solution of forward and inverse displacement analysis of spherical Stephenson-III six-bar mechanism are obtained.Finally,numerical examples of forward and inverse analysis are presented to illustrate the proposed approach.The results indicate that the constraint equations established with the proposed method are much simpler than those reported by previous literature,and can be readily eliminated and solved.
文摘By using transfer matrix,the lower-order natural frequencies of the Watt type planar six-barlinkage are calculated in this paper.The experiment of the modal analysis is done with the SignalProcessor 7T17S,and the experiment results agree with the calculated ones.This method only re-quires calculation of lower-order transfer matrix and determinant values,so that, it can be done ona minicomputer such as IBM/PC.The method adopted in this paper is also suitable for vibrationanalysis of other types of linkages.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175030,51505022)Foundation of Talents of Beijing Jiaotong University,China(Grant No.2015RC047)+1 种基金China Postdoctoral Science Foundation(Grant No.2013M531168)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130009110030)
文摘Most current biped robots are equipped with two feet arranged in the right and left which inspired by the human body system. Different from the existing configurations, a novel biped robot with inner and outer feet based on a spatial six-bar 4R2C(R and C denote revolute and cylindric joints, respectively) mechanism is proposed. It can move along a line or a curve by three walking modes that are dwell adjustment mode, limit position adjustment mode and any position adjustment mode. Kinematic, gait planning and stability analyses are performed respectively, and a prototype is developed. Lastly, a potential application is considered and two manipulating modes(sphere and cylinder manipulating modes) are carried out. This interesting mechanism feathering its single dosed-chain structure and unique work performance is expected to motivate the configuration creation of biped robots.
基金Project supported by the National Natural Science Foundation of China(Grant No.51875531)。
文摘Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.
文摘Crank shaft net torque of pumping units is a volatile alternating load, while output torque of a general motor is basically constant. Thus, load characteristics of pumping units and motors are not able to "harmoniously" match each other; this resulted in a higher output of the motor, lower efficiency, and higher energy consumption of the pumping units. A new six-bar linkage pumping unit is presented according to moment-changing theory. It allows to adjust automatically following the changes of polished rod load, and achieves small crank shaft curve fluctuation. The new pumping unit improves motor efficiency, reduces motor output power, and saves energy. According to the design scheme, kinematics and kinetics models of the new six-bar linkages pumping unit are built up. An optimum design on the main peoCormance parameters and functional analysis were peoCormed.
基金supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).
文摘This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.