期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Skarn mineralogy and its geological significance for the Tayuan (Cu-Mo)-Pb-Zn deposit, northern Daxinganling metallogenic belt 被引量:4
1
作者 Chao Li Tao Ren +4 位作者 Jian-Guo Huang Run-Sheng Han He-Jun Yin Hong-Yang Zhou Zhi-Hong Feng 《Acta Geochimica》 EI CAS CSCD 2017年第1期89-101,共13页
The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron... The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron microprobe analysis shows that the end member of garnet is mainly andradite(Ad_(62-97)Gr_(11-45),the pyroxene is mainly diopside,and epidote is mainly clinozoisite.These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn.Sometimes the content zonation can be observed in garnets.With one garnet crystal,content is shifty from the core to the rim.In general,the iron content in the core is higher than in the edge.The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing,suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state.In the Tayuan polymetallic deposit,the ratio of Mn/Fe in pyroxene is about 1.3,and of Mg/Fe,it is about 2.The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn,Cu,Mo deposits in the world. 展开更多
关键词 skarn minerals (Cu Mo) Pb Zn deposit Physical chemical condition Tayuan
下载PDF
Quantitative analysis of intrusive body morphology and its relationship with skarn mineralization——A case study of Fenghuangshan copper deposit, Tongling, Anhui, China 被引量:6
2
作者 Xian-cheng MAO Ying ZHAO +5 位作者 Hao DENG Bin ZHANG Zhan-kun LIU Jin CHEN Yan-hong ZOU Jian-qing LAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期151-162,共12页
The shapes of intrusive body and contact zone might influence the formation and distribution of orebodies in skarn deposit.By taking Xinwuli intrusive body in Fenghuangshan copper deposit,Tongling,Anhui,China,as the r... The shapes of intrusive body and contact zone might influence the formation and distribution of orebodies in skarn deposit.By taking Xinwuli intrusive body in Fenghuangshan copper deposit,Tongling,Anhui,China,as the research object,a new method was used to obtain the quantitative relationship between intrusion morphology and skarn mineralization.The first step of the method was to extract morphological characteristic parameters based on mathematical morphology and Euclidean distance transformation;then the quantitative relationship between the parameters and orebodies was analyzed;finally correlational analyses between the parameters and mineralization indices were conducted.The results show that morphological characteristic parameters can effectively indicate the location of concealed ore bodies in skarn deposit,with the following parts as advantageous positions of skarn mineralization:(1)the parts away from the1st trend surface in the range from?25to50m;(2)the convex parts about200m away from the2nd trend surface,around which the tangent plane of the intrusive body is approximately consistent with the trend surface;(3)the contact zones with angle between intrusive body original contact surface and trend contact surface ranging from35°to70°;(4)the parts with angle between intrusive body original contact surface and regional extruding far crustal stress ranging from50°to60°.These knowledge can be applied to more skarn deposits for future mineral exploration. 展开更多
关键词 intrusive body morphological analysis contact zone mathematical morphology skarn mineralization Fenghuangshan copper deposit
下载PDF
Petrogenetic characterization of the host rocks of the Sanaga iron ore prospect,southern Cameroon
3
作者 Tasin Godlove Bafon Anthony Temidayo Bolarinwa +6 位作者 Cheo Emmanuel Suh Temesgen Oljira Bekele Ayele Bedada Gilles Nyuyki Ngoran Kevin Ijunghi Ateh Boris Martial Keuko Djoumbissie Cho Terence Ngang 《Acta Geochimica》 EI CAS CSCD 2023年第2期195-220,共26页
The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1%Fe and whose origin remains debatable.The mineralization occurs as NE-SW oriented discontinuous lenti... The Sanaga iron ore prospect is a recent discovery in the Nyong Series with a resource estimated at 82.9 Mt at 32.1%Fe and whose origin remains debatable.The mineralization occurs as NE-SW oriented discontinuous lenticular bodies of magnetite-bearing pyroxenegneisses(MPG)hosted by ortho-derived gneisses.Rare amphibolites are observed.The MPG mineral assemblage consists of quartz-magnetite-orthopyroxene-garnet-tremolite/actinolite exhibiting a granoblastic texture,which is characteristic of granulite facies metamorphism.The granodioritic gneisses show compositional features of the tonalite-trondhjemite-granodiorite association.Their trace and REE element geochemistry indicate their protolith melt resulted from the partial melting of a subducted oceanic slab,with interaction with the overlying mantle wedge during ascent.The amphibolites show enrichment in LILE with negative Ta–Nb and Zr–Hf indicating arc-related magmas generated by partial melting of a sub-continental lithospheric mantle source with metasomatism by subduction-related fluids.The MPG exhibits oxidation-exsolution features characterized by ilmenite lamellae,with hematite fracture-fillinginmagnetite,andlacksfeatures characteristic of typical BIF such as LREE depletion relative to HREE,positive Eu,La,and Y anomalies.Based on the results of this study,we interpret the Sanaga MPG as a possible skarn-type mineralization formed by the metamorphism/metasomatism of a possible BIF protolith.The results of this study compare with similar magnetite-rich mineralization in the Sa o Francisco craton in northeastern Brazil and enhance the correlation of pre-drift reconstructions of the Sa o Francisco–Congo Cratons. 展开更多
关键词 Magnetite-pyroxene-gneiss METASOMATISM Ilmenite exsolution Hematite fracture-filling skarn type mineralization Nyong Series
下载PDF
Geology and genesis of the Aqishan Pb-Zn deposit,NW China:Insights from mineralogy,geochemistry,and in situ U-Pb geochronology
4
作者 Kang Wang Yinhong Wang +6 位作者 Jun Deng Jiajun Liu Fangfang Zhang Wei Zhang Hui Zhang Wenxin Gu Hong Chen 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第5期489-514,共26页
The unique ore-forming processes and the key factors responsible for formation of skarn deposits are still obscure,and challenges exist in the determination of timing of Pb-Zn skarns owing to lacking suitable mineral ... The unique ore-forming processes and the key factors responsible for formation of skarn deposits are still obscure,and challenges exist in the determination of timing of Pb-Zn skarns owing to lacking suitable mineral chronometers.Here we present detailed paragenesis,bulk geochemistry,in situ U-Pb dating of zircon and garnet,and garnet oxygen isotopes together with in situ zircon Hf-O isotopes from the newly discovered Aqishan Pb-Zn deposit in the southern Central Asian Orogenic Belt(CAOB),northwest China.This comprehensive data set revealed a Late Carboniferous subduction-related distal Pb-Zn skarn system associated with the granitic magmatism.Pre-ore stage garnets are generally subhedral to euhedral with oscillatory zoning and show slightly fractionated rare earth element patterns with positive Eu anomalies that point to an infiltration metasomatism origin under high water/rock ratios.The syn-ore stage sphalerite is typically enriched in Mn and Cd and has moderate Zn/Cd ratios(337–482),with a formation temperature of 265℃to 383℃,which indicate magmatic-hydrothermal signatures.The isocons defined by P_(2)O_(5)decipher that the principal factors for skarn formation were elevated activities of Fe,Ca,and Si species,where remobilization of Pb metals,meanwhile,contributed to ore-forming budgets to mineralizing fluids.SIMS U-Pb dating of zircons from granite porphyry that occurs distal to the skarns and Pb-Zn orebodies shows that these intrusions emplaced at ca.311.3–310.6 Ma,recording the subduction of the Paleo-Tianshan oceanic plate.Hydrothermal garnets in close textural association with Pb-Zn sulfides yield indistinguishable in situ LA-ICP-MS U-Pb ages of 310.5±4.1 Ma.Whole-rock geochemistry and in situ zircon Hf-O isotopes(δ^(18)O=4.6‰–6.0‰)indicate that the granite porphyry was derived from partial melting of juvenile crust and influenced by subducted oceanic crust.Oxygen isotope compositions of garnets(δ^(18)O=8.0‰–9.0‰)demonstrate that the equilibrated ore fluids were inherited from fluid-rock interactions between a primary magmatic water and host tuff rocks.Our study highlights the application of garnets as a potential robust U-Pb geochronometer and isotopic tracer of ore fluids in skarn mineralizing systems in subduction-related arc environments. 展开更多
关键词 In situ U-Pb dating Garnet O isotopes Aqishan Pb-Zn deposit skarn mineralization Southern CAOB
原文传递
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
5
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 Tungsten(copper) polymetallic deposit Late Mesozoic granites Carboniferous-Permian carbonate rocks skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部