Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These featu...The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These features can be tampered with when nanoparticles are been introduced into the base fluid to produce an improved heat carrier fluid for the system. This study investigates the impact of temperature-dependent properties on the movement of TiO2-SiO2-ZnO-Fe2O3/PAO Tetra hybrid nanofluid along a vertical porous surface with suction. The system of governing Partial Differential Equations (PDEs) was formulated and transformed into the system of coupled nonlinear third-order Ordinary Differential Equations (ODEs) by similarity techniques. The resulting ODEs were solved numerically using the shooting method and fourth order Runge-Kutta method with the aid of Maple 18.0 software. Using numerical and statistical methods, the study analyzes velocity, temperature profiles, skin friction coefficient, and Nusselt number. It was found that as the variable thermal conductivity parameter upsurges both the skin friction coefficient and Nusselt number intensify at the rate of 0.011697519 and 8.043581616 respectively. This study underscores the vital role of Tetra hybrid nanofluid’s thermophysical properties in improving heat transmission for diverse appli cations. By manipulating nanoparticles within the base fluid, the heat carrier fluid’s efficiency can be enhanced, critical for industries like automotive and enewable energy. These insights inform the design of more efficient heat exchange systems, advancing sustainability and performance in real-world scenarios.展开更多
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
文摘The significance of the thermophysical properties of Tetra hybrid nanofluid in enhancing heat transmission in various applications like heat exchangers, automobiles, and solar storage cannot be overstated. These features can be tampered with when nanoparticles are been introduced into the base fluid to produce an improved heat carrier fluid for the system. This study investigates the impact of temperature-dependent properties on the movement of TiO2-SiO2-ZnO-Fe2O3/PAO Tetra hybrid nanofluid along a vertical porous surface with suction. The system of governing Partial Differential Equations (PDEs) was formulated and transformed into the system of coupled nonlinear third-order Ordinary Differential Equations (ODEs) by similarity techniques. The resulting ODEs were solved numerically using the shooting method and fourth order Runge-Kutta method with the aid of Maple 18.0 software. Using numerical and statistical methods, the study analyzes velocity, temperature profiles, skin friction coefficient, and Nusselt number. It was found that as the variable thermal conductivity parameter upsurges both the skin friction coefficient and Nusselt number intensify at the rate of 0.011697519 and 8.043581616 respectively. This study underscores the vital role of Tetra hybrid nanofluid’s thermophysical properties in improving heat transmission for diverse appli cations. By manipulating nanoparticles within the base fluid, the heat carrier fluid’s efficiency can be enhanced, critical for industries like automotive and enewable energy. These insights inform the design of more efficient heat exchange systems, advancing sustainability and performance in real-world scenarios.