Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins ar...Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.展开更多
为探索SKP1(S-phase kinase association protein 1)基因在猪卵泡中的表达规律,本试验从猪卵泡组织中克隆了猪SKP1基因CDS区全长序列,采用Real-time PCR方法检测SKP1基因在不同组织中的表达谱,进一步分析了该基因在梅山猪和杜洛克猪S卵...为探索SKP1(S-phase kinase association protein 1)基因在猪卵泡中的表达规律,本试验从猪卵泡组织中克隆了猪SKP1基因CDS区全长序列,采用Real-time PCR方法检测SKP1基因在不同组织中的表达谱,进一步分析了该基因在梅山猪和杜洛克猪S卵泡、M1卵泡、M2卵泡、L卵泡中的表达。结果表明,经克隆测序,得到了猪SKP1基因492bp编码区全长序列,与羊、人、黑猩猩、牛、大鼠的同源性分别为93.10%、92.90%、92.29%、91.89%、89.86%。SKP1基因在各组织中均有不同程度的表达(肌肉、脂肪、心脏、肝脏、脾脏、肺脏、肾脏、胃、十二指肠、卵巢、输卵管、子宫、子宫角、垂体、黄体、大脑、下丘脑),其中在子宫、脾脏、输卵管中表达量较高。SKP1基因的表达量在梅山猪S卵泡、M1卵泡和M2卵泡中的表达量均高于杜洛克猪,特别是在梅山猪M1卵泡和M2卵泡中SKP1基因的表达量极显著高于杜洛克猪(P<0.01),分别达到了2.39、2.82倍,而在L卵泡中的表达量却是杜洛克猪高于梅山猪,结果提示SKP1基因可能参与猪卵泡发育过程。展开更多
Suppressor of G2 allele of skp1(SGT1)is a highly conserved eukaryotic protein that plays a vital role in growth,development,and immunity in both animals and plants.Although some SGT1 interactors have been identified,t...Suppressor of G2 allele of skp1(SGT1)is a highly conserved eukaryotic protein that plays a vital role in growth,development,and immunity in both animals and plants.Although some SGT1 interactors have been identified,the molecular regulatory network of SGT1 remains unclear.SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat(NLR)class of immune receptors,thereby positively regulating plant immunity.SGT1 has also been found to be asso-ciated with the SKP1-Cullin-F-box(SCF)E3 ubiquitin ligase complex.However,whether SGT1 targets im-mune repressors to coordinate plant immune activation remains elusive.In this study,we constructed a toolbox for TurbolD-and split-TurbolD-based proximity labeling(PL)assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre-and post-immune activation.The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associ-ated with plant development to those linked with plant immune responses.We found that SGT1 interacts with Necrotic Spotted Lesion1(NSL1),which negatively regulates salicylic acid-mediated defenseby inter-fering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1(NPR1)during N NLR-mediated response to tobacco mosaic virus.SGT1 promotes the SCF-dependent degrada-tion of NSL1 to facilitate immune activation,while salicylate-induced protein kinase-mediated phosphory-lation of SGT1further potentiates this process.Besides NNLR,NSL1also functions in several other NLR-mediated immunity.Collectively,our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.展开更多
The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3...The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3 ubiquitin ligase complexes called SCFs (SKP1, Cullinl, F-box protein, and Rbxl); they have an N-terminal F-box motif that binds to SKP1 (S-phase kinase associated protein), and often have C-terminal protein-protein interaction domains, which specify the protein substrates for degradation via the ubiquitin pathway. One of the most frequently found protein interaction domains in F-box proteins is the Kelch repeat domain. Although both the F-box and Kelch repeats are ancient motifs, Kelch repeats-containing F-box proteins (KFB) have only been reported for human and Arabidopsis previously. The recent sequencing of the rice genome and other plant genomes provides an opportunity to examine the possible evolution history of KFB. We carried out extensive BLAST searches to identify putative KFBs in selected organisms, and analyzed their relationships phylogenetically. We also carried out the analysis of both gene duplication and gene expression of the KFBs in rice and Arabidopsis. Our study indicates that the origin of KFBs occurs before the divergence of animals and plants, and plant KFBs underwent rapid gene duplications.展开更多
The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and bio...The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and biological evaluation are of great interest to medicinal chemistry community.In this communication,we report an efficient BrΦnsted acid-promoted C(sp^3)-H functionalization approach that enables the rapid construction of biologically important isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine hybrids from 5-methyl-7-(2,4,6-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine,2-formylbenzoic acid and various anilines.The title compounds were generated in high to excellent yields(up to 96%)regardless of the electronic nature and steric effects of the substituents.In this reaction,an isoindolinone scaffold,one C-C single bond,and two C-N bonds were formed simultaneously with high atom economy.In this work,we have envisioned that the methyl group linked to the electron-deficient Nheterocycles could be used as a new synthetic handle for late-state diversification and may have broad applications in the field of organic and medicinal chemistry.Besides,the title compounds have exhibited promising activity against the SKP2-CKS1 interaction.展开更多
基金Supported by the NSFC Projects(31971972)the Natural Science Foundation of Heilongjiang Province(ZD2019C001)the Outstanding Talents and Innovative Team of Agricultural Scientific Research。
文摘Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.
文摘为探索SKP1(S-phase kinase association protein 1)基因在猪卵泡中的表达规律,本试验从猪卵泡组织中克隆了猪SKP1基因CDS区全长序列,采用Real-time PCR方法检测SKP1基因在不同组织中的表达谱,进一步分析了该基因在梅山猪和杜洛克猪S卵泡、M1卵泡、M2卵泡、L卵泡中的表达。结果表明,经克隆测序,得到了猪SKP1基因492bp编码区全长序列,与羊、人、黑猩猩、牛、大鼠的同源性分别为93.10%、92.90%、92.29%、91.89%、89.86%。SKP1基因在各组织中均有不同程度的表达(肌肉、脂肪、心脏、肝脏、脾脏、肺脏、肾脏、胃、十二指肠、卵巢、输卵管、子宫、子宫角、垂体、黄体、大脑、下丘脑),其中在子宫、脾脏、输卵管中表达量较高。SKP1基因的表达量在梅山猪S卵泡、M1卵泡和M2卵泡中的表达量均高于杜洛克猪,特别是在梅山猪M1卵泡和M2卵泡中SKP1基因的表达量极显著高于杜洛克猪(P<0.01),分别达到了2.39、2.82倍,而在L卵泡中的表达量却是杜洛克猪高于梅山猪,结果提示SKP1基因可能参与猪卵泡发育过程。
基金supported by grants from the National Natural Science Foundation of China(32320103003 and 32122070)the“High-end Foreign Experts Recruitment Plan”of Ministry of Science and Technology(G2023108007L)+3 种基金Chinese Universities Scientific Fund(2023TC074)Pinduoduo-China Agricultural University Research Fund(PC2023B02012)China National Postdoctoral Program for Innovative Talents(BX20240421)2115 Talent Development Program of China Agricultural University.
文摘Suppressor of G2 allele of skp1(SGT1)is a highly conserved eukaryotic protein that plays a vital role in growth,development,and immunity in both animals and plants.Although some SGT1 interactors have been identified,the molecular regulatory network of SGT1 remains unclear.SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat(NLR)class of immune receptors,thereby positively regulating plant immunity.SGT1 has also been found to be asso-ciated with the SKP1-Cullin-F-box(SCF)E3 ubiquitin ligase complex.However,whether SGT1 targets im-mune repressors to coordinate plant immune activation remains elusive.In this study,we constructed a toolbox for TurbolD-and split-TurbolD-based proximity labeling(PL)assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre-and post-immune activation.The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associ-ated with plant development to those linked with plant immune responses.We found that SGT1 interacts with Necrotic Spotted Lesion1(NSL1),which negatively regulates salicylic acid-mediated defenseby inter-fering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1(NPR1)during N NLR-mediated response to tobacco mosaic virus.SGT1 promotes the SCF-dependent degrada-tion of NSL1 to facilitate immune activation,while salicylate-induced protein kinase-mediated phosphory-lation of SGT1further potentiates this process.Besides NNLR,NSL1also functions in several other NLR-mediated immunity.Collectively,our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
基金Supported by the Grant from US Department of Energy (DE-FG02- 02E R 15332). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).Acknowledgements We thank Ralph Quatrano for sharing unpublished information on Physcomitrella patens genomic sequences, Hongzhi Kong for helpful discussion, and Guanfang Wang for comments on the manuscript.
文摘The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3 ubiquitin ligase complexes called SCFs (SKP1, Cullinl, F-box protein, and Rbxl); they have an N-terminal F-box motif that binds to SKP1 (S-phase kinase associated protein), and often have C-terminal protein-protein interaction domains, which specify the protein substrates for degradation via the ubiquitin pathway. One of the most frequently found protein interaction domains in F-box proteins is the Kelch repeat domain. Although both the F-box and Kelch repeats are ancient motifs, Kelch repeats-containing F-box proteins (KFB) have only been reported for human and Arabidopsis previously. The recent sequencing of the rice genome and other plant genomes provides an opportunity to examine the possible evolution history of KFB. We carried out extensive BLAST searches to identify putative KFBs in selected organisms, and analyzed their relationships phylogenetically. We also carried out the analysis of both gene duplication and gene expression of the KFBs in rice and Arabidopsis. Our study indicates that the origin of KFBs occurs before the divergence of animals and plants, and plant KFBs underwent rapid gene duplications.
基金supported by the National Natural Science Foundation of China(Nos.81773562 and 81703326)China Postdoctoral Science Foundation(Nos.2018M630840 and 2019T120641)Scientific Program of Henan Province(No.182102310123)。
文摘The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and biological evaluation are of great interest to medicinal chemistry community.In this communication,we report an efficient BrΦnsted acid-promoted C(sp^3)-H functionalization approach that enables the rapid construction of biologically important isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine hybrids from 5-methyl-7-(2,4,6-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine,2-formylbenzoic acid and various anilines.The title compounds were generated in high to excellent yields(up to 96%)regardless of the electronic nature and steric effects of the substituents.In this reaction,an isoindolinone scaffold,one C-C single bond,and two C-N bonds were formed simultaneously with high atom economy.In this work,we have envisioned that the methyl group linked to the electron-deficient Nheterocycles could be used as a new synthetic handle for late-state diversification and may have broad applications in the field of organic and medicinal chemistry.Besides,the title compounds have exhibited promising activity against the SKP2-CKS1 interaction.