To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s...To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”展开更多
为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量...为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。展开更多
基金This research was funded by the National Key R&D Program of China(No.2018YFB2100603)the Key R&D Program of Hubei Province(No.2022BAA048)+2 种基金the National Natural Science Foundation of China program(No.41890822)the Open Fund of National Engineering Research Centre for Geographic Information System,China University of Geosciences,Wuhan 430074,China(No.2022KFJJ07)The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Centre of Wuhan University.
文摘To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”
文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。
文摘为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。