The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o...The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments.展开更多
Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture conte...Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.展开更多
For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulo...For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulomb failure criterion were adopted to derive a stability model for the infinite terraced slope subjected to an intense rainfall. Numerical simulation was performed for verifying its applicability. The results of numerical simulation indicate that a set of stepped wetting fronts are found during infiltration, and the infiltration of terraced slope covered by coarse-textured soils can be approximated as one-dimensional infiltration. The potential sliding surfaces from the numerical method are all parallel to the slope line, and the proposed model and framework can provide an approximate method of estimating how the infiltration affects the stability of an infinite terraced slope.展开更多
An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assume...An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.展开更多
The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(...The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.展开更多
Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action f...Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action from the shoulder is too close, the shear stress of the slope will be significantly greater than its shear strength, resulting in reduced slope stability. Therefore, it is of great importance to study the relationship between the building load and the stability of the slope. This study aims to analyze the influence of different building loads applied at different distances on the top of the slope and deduces their effects on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (FOS) increases with the increase of the distance between the top-loading and the slope shoulder;it varies from 1.37 to 1.53 for the load P = 120 KPa, 1.27 to 1.53 for the load P = 200 KPa, and from 1.18 to 1.44 for P = 300 KPa, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.展开更多
In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale ...In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.展开更多
基金supported by the Basic Research Special Plan of Yunnan Provincial Department of Science and Technology-General Project(Grant No.202101AT070094)。
文摘The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19E080007,No.LY19E080008)the Natural Science Foundation of China(Grant No.51578356)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)。
文摘Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.
基金Project(51178423)supported by the National Natural Science Foundation of China
文摘For fully understanding the hydrological dynamics of an infinite terraced slope, the infiltration process was studied by employing the Green and Ampt infiltration model. The limit equilibrium method and the Mohr-Coulomb failure criterion were adopted to derive a stability model for the infinite terraced slope subjected to an intense rainfall. Numerical simulation was performed for verifying its applicability. The results of numerical simulation indicate that a set of stepped wetting fronts are found during infiltration, and the infiltration of terraced slope covered by coarse-textured soils can be approximated as one-dimensional infiltration. The potential sliding surfaces from the numerical method are all parallel to the slope line, and the proposed model and framework can provide an approximate method of estimating how the infiltration affects the stability of an infinite terraced slope.
基金Project(R5110012)supported by Special Foundation for Distinguished Young Scholars of Zhejiang Province,ChinaProject(2009C33117)supported by The General Program of Natural Science Foundation of Zhejiang Province,China
文摘An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY13E080008)the Natural Science Foundation of China(Grant No.51108293)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)
文摘The yield criterion parameters of the soil material change with different values of the cohesion and the angle of friction because of sustained rainfall infiltration. Based on the Mohr-Coulomb(M-C) and Drucker-Prager(D-P) yield criteria, some reasonable yield criteria selections were discussed for quantitative analysis of unsaturated soil slope stability. Moreover, a critical point was found at the effective angle of friction equaling to 16.5° by transformation of parameters related to unsaturated soil under sustained rainfall. When the effective angle of friction more than 16.5° through parameter transformation of different yield criteria under natural condition, the calculation result of the safety factor was such that: f(DP1) > f(M-C) > f(equivalent M-C) > f(DP2) > f(DP3). While the effective angle of friction less than 16.5°, through parameter transformation, the safety factors were in the following order: f(DP1) > f(M-C) > f(DP2) > f(equivalent M-C) > f(DP3). The calculated results from a case study showed that the equivalent M-C yield criterion should be the best at evaluating soil slope stability before rainfall; the DP2 yield criterion should be selected to calculate the soil slope stability at the effective angle of friction less than 16.5° under sustained rainfall. The yield criterion should be selected or adjusted reasonably to calculate the safety factor of unsaturated soil slopes before and during sustained rainfall.
文摘Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action from the shoulder is too close, the shear stress of the slope will be significantly greater than its shear strength, resulting in reduced slope stability. Therefore, it is of great importance to study the relationship between the building load and the stability of the slope. This study aims to analyze the influence of different building loads applied at different distances on the top of the slope and deduces their effects on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (FOS) increases with the increase of the distance between the top-loading and the slope shoulder;it varies from 1.37 to 1.53 for the load P = 120 KPa, 1.27 to 1.53 for the load P = 200 KPa, and from 1.18 to 1.44 for P = 300 KPa, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.
基金supported by the National Natural Science Foundation of China(42041006)the Natural Science Foundation of Qinghai Province(2020-ZJ-906).
文摘In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.