期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Slope stability analysis of Balia Nala landslide, Kumaun Lesser Himalaya, Nainital, Uttarakhand, India 被引量:3
1
作者 Mohit Kumar Shruti Rana +1 位作者 Pitamber Dutt Pant Ramesh Chandra Patel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期150-158,共9页
Balia Nala is the outlet of the Nainital lake, flowing towards southeast direction. Presence of Nainital habitation at its right bank has high socio-economic importance. This study presents the stability analysis of a... Balia Nala is the outlet of the Nainital lake, flowing towards southeast direction. Presence of Nainital habitation at its right bank has high socio-economic importance. This study presents the stability analysis of a ravine/valley along Balia Nala. Variegated slates(lower Krol and upper Blaini formations) are the main rock types, wherever the outcrop does exist and rest of the area is covered by slope wash and river borne materials. Three sets of joints are presented in the area, but 4 sets of joints also exist at some locations. Nainital lake fault intersected by Manora fault from southwest direction passes through eastern side of the study area, and some small faults, which are sub-branches of Nainital lake fault, are observed(with 10 m offset) and promote the landslide in the area. This study shows that different kinds of discontinuities(joints, faults and shear zones) and rapid down cutting by the stream due to neotectonic activity affect the stability of the slope. The fragile lithology and deep V-shaped valley further accelerate the mass movement in the study area. In addition, rock mass rating(RMR), factor of safety(FOS) and graphical analysis of the joints indicate the study area as landslide-prone zone. This study will be helpful in not only reducing the risk on life of people, but also in assisting the ongoing civil work in the study area. 展开更多
关键词 Rock mass rating(RMR) Factor of safety(FOS) Balia Nala landslide slope stability analysis
下载PDF
Effect of graph generation on slope stability analysis based on graph theory 被引量:2
2
作者 Enpu Li Xiaoying Zhuang +1 位作者 Wenbo Zheng Yongchang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期380-386,共7页
Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical applicat... Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used methods for slope stability analysis. However, it can be noted that they both have some limitations in practical application. In the LEM, the constitutive model cannot be considered and many assumptions are needed between slices of soil/rock. The SRM requires iterative calculations and does not give the slip surface directly. A method for slope stability analysis based on the graph theory is recently developed to directly calculate the minimum safety factor and potential critical slip surface according to the stress results of numerical simulation. The method is based on current stress state and can overcome the disadvantages mentioned above in the two traditional methods. The influences of edge generation and mesh geometry on the position of slip surface and the safety factor of slope are studied, in which a new method for edge generation is proposed, and reasonable mesh size is suggested. The results of benchmark examples and a rock slope show good accuracy and efficiency of the presented method. 展开更多
关键词 Graph theory slope stability analysis Edge generation Mesh geometry
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques 被引量:1
3
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 slope stability analysis Monte Carlo simulation Neural network(NN) Transfer learning(TL)
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
4
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope slope stability analysis Rainfall effect Strength reduction
下载PDF
Optics-based metaheuristic approach to assess critical failure surfaces in both circular and non-circular failure modes for slope stability analysis
5
作者 Jayraj Singh Amit Kumar Verma +2 位作者 Haider Banka Ravishankar kumar Amit Jaiswal 《Rock Mechanics Bulletin》 2024年第1期37-54,共18页
In many construction projects,a proactive slope stability evaluation is a prerequisite.Although many deterministic or non-deterministic approaches have been commonly used,metaheuristic approaches have resulted in high... In many construction projects,a proactive slope stability evaluation is a prerequisite.Although many deterministic or non-deterministic approaches have been commonly used,metaheuristic approaches have resulted in high precision and significant outcomes for slope stability analysis problems.The current work focuses on the reliable assessment of critical failure surfaces associated with the least factor of safety value in both homogeneous and non-homogeneous slopes using a new simplified meta-heuristic approach called optics-inspired optimization(OIO).The algorithm utilizes six different LEM methods as a fitness function for deriving the factor of safety.Experimental analysis over three benchmark studies has been performed to demonstrate the algorithm's robustness and effectiveness.The implementation found more robust results as compared to previous studies.Meanwhile,the algorithm's statistical implication is conducted using the ANOVA test,which inferred better outcomes.With this interpretation,the approach claims to be suitable and efficient for slope stability analysis. 展开更多
关键词 OIO-Algorithm Metaheuristic algorithms slope stability analysis Critical failure surface LEM'S procedure
原文传递
Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique 被引量:24
6
作者 赵炼恒 李亮 +2 位作者 杨峰 罗强 刘项 《Journal of Central South University》 SCIE EI CAS 2010年第4期836-844,共9页
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it... Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope. 展开更多
关键词 nonlinear failure criterion strength reduction method upper-bound theorem of limit analysis slope stability analysis factor of safety
下载PDF
Determination and stability analysis of ultimate open-pit slope under geomechanical uncertainty 被引量:10
7
作者 Ali Moradi Afrapoli Morteza Osanloo 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期105-110,共6页
In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most crit... In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over. 展开更多
关键词 Safety factor Probability of failure Geomechanical property uncertainty Overall pit slope stability analysis
下载PDF
Stability analysis for natural slope by kinematical approach 被引量:2
8
作者 孙志彬 覃长兵 《Journal of Central South University》 SCIE EI CAS 2014年第4期1546-1553,共8页
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const... The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements. 展开更多
关键词 natural slope stability analysis limit analysis upper bound theorem
下载PDF
UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope
9
作者 Riccardo SALVINI Luisa BELTRAMONE +5 位作者 Vivien DE LUCIA Andrea ERMINI Claudio VANNESCHI Caterina ZEI Daniele SILVESTRI Andrea RINDINELLA 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2804-2821,共18页
This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in th... This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions. 展开更多
关键词 GroundPenetrating Radar(GPR) Unmanned AerialVehicle e(UAV) GPR-drone integrated system slope stability analysis Static and dynamic loading conditions
下载PDF
3D stability analysis method of concave slope based on the Bishop method 被引量:6
10
作者 Zhang Tianwen Cai Qingxiang +2 位作者 Han Liu Shu Jisen Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期365-370,共6页
In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop metho... In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights. 展开更多
关键词 Bishop method Concave slope Three-dimensional structure stability analysis
下载PDF
Finite element analysis of slope stability by expanding the mobilized principal stress Mohr's circles-Development, encoding and validation 被引量:2
11
作者 Djillali Amar Bouzid 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1165-1179,共15页
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.... In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results. 展开更多
关键词 slope stability Finite element analysis Strength reduction method(SRM) Stress point-based factor of safety(FOS) Limit equilibrium method(LEM) Stress deviator Mohr’s circle Plastic strain
下载PDF
Stability and reinforcement analysis of rock slope based on elasto-plastic finite element method 被引量:2
12
作者 刘耀儒 武哲书 +2 位作者 常强 李波 杨强 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2739-2751,共13页
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional... The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China. 展开更多
关键词 stability analysis rock slope plastic complementary energy(PCE) unbalanced forces elasto-plasticity FEM
下载PDF
Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling 被引量:3
13
作者 Xing-ping Lai Peng-fei Shan +2 位作者 Mei-feng Cai Fen-hua Ren Wen-hui Tan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期1-11,共11页
High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slop... High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The phys-ico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally;specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acous-tic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field pho-togrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model re-sults indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring informa-tion. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits. 展开更多
关键词 slope stability analysis EXCAVATION DESIGN three-dimensional models physical simulation
下载PDF
Comparative Study on Response Surfaces for Reliability Analysis of Spatially Variable Soil Slope 被引量:4
14
作者 李亮 褚雪松 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期81-90,共10页
This paper focuses on the performance of the second-order polynomial-based response surfaces on the reliability of spatially variable soil slope. A single response surface constructed to approximate the slope system f... This paper focuses on the performance of the second-order polynomial-based response surfaces on the reliability of spatially variable soil slope. A single response surface constructed to approximate the slope system failure performance function G(X) (called single RS) and multiple response surfaces constructed on finite number of slip surfaces (called multiple RS) are developed, respectively. Single RS and multiple RS are applied to evaluate the system failure probability pf for a cohesive soil slope together with Monte Carlo simulation (MCS). It is found thatpe calculated by single RS deviates significantly from that obtained by searching a large number of potential slip surfaces, and this deviation becomes insignificant with the decrease of the number of random variables or the increase of the scale of fluctuation. In other words, single RS cannot approximate G(X) with reasonable accuracy. The value of pc from multiple response surfaces fits well with that obtained by searching a large number of potential slip surfaces. That is, multiple RS can estimate G(X) with reasonable accuracy. 展开更多
关键词 probabilistic slope stability analysis response surface method Monte Carlo simulation
下载PDF
An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes 被引量:12
15
作者 李亮 褚雪松 《China Ocean Engineering》 SCIE EI 2011年第2期357-364,共8页
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy ... The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters. 展开更多
关键词 slope stability analysis limit equilibrium method particle swarm optimization algorithm harmony strategy
下载PDF
A New Approach to the Determination of the Critical Slip Surfaces of Slopes 被引量:6
16
作者 李亮 郑榕明 褚雪松 《China Ocean Engineering》 SCIE EI CSCD 2013年第1期51-64,共14页
A new method for the determination of the critical slip surfaces of slopes is proposed in this paper. In this paper, the original critical slip field method is extended in terms of the total residual moment, values of... A new method for the determination of the critical slip surfaces of slopes is proposed in this paper. In this paper, the original critical slip field method is extended in terms of the total residual moment, values of residual work as well as the unbalanced thrust force at the exit point for a given non-circular slip surface. The most critical slip surface with the maximum representative value for a prescribed factor of safety will be optimized and located using the harmony search algorithm. The prescribed factor of safety is modified with certain tiny interval in order to find the critical slip surface where the maximum representative value is zero. The aforementioned approach to the location of the critical slip surface is greatly different from the traditional limit equilibrium procedure. Three typical soil slopes are evaluated by use of the proposed method, and the comparisons with the classical approaches have illustrated the applicability of the proposed method. 展开更多
关键词 slope stability analysis limit equilibrium method critical slip field method factor of safety
下载PDF
Factor of safety of strain-softening slopes 被引量:4
17
作者 Hossein Rafiei Renani C.Derek Martin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期473-483,共11页
Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the ... Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the slope factor of safety is investigated by performing a series of analyses for various slope geometries and strength properties.Stability charts and equations are developed to estimate the factor of safety of strain-softe ning slopes from the results of traditional stability analysis based on perfectly-plastic behavior.Two example applications including an open pit mine in weak rock and clay shale slope with daylighting bedding planes are presented.The results of limit equilibrium analysis and shear strength reduction method with perfectly-plastic models were in close agreement.Using perfectly-plastic models with peak strength properties led to overly optimistic results while adopting residual strength properties gave excessively conservative outcomes.The shear strength reduction method with a strain-softening model gave realistic factors of safety while accounting for the process of strength degradation. 展开更多
关键词 slope stability analysis Factor of safety ratio Shear strength reduction Perfectly-plastic behavior Open pit slope Clay shale slope
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
18
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions slope stability analysis K-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
Failure analysis on a heavy rainfall-induced landslide in Huay Khab Mountain in Northern Thailand
19
作者 Veerayut KOMOLVILAS Weeradetch TANAPALUNGKORN +1 位作者 Panon LATCHAROTE Suched LIKITLERSUANG 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2580-2596,共17页
On 28 th July 2018,a massive landslide occurred in a mountainous area in Northern Thailand.The landslide after ten days of heavy rainfall generated the movement of uphill mountain soil into the populated village.This ... On 28 th July 2018,a massive landslide occurred in a mountainous area in Northern Thailand.The landslide after ten days of heavy rainfall generated the movement of uphill mountain soil into the populated village.This study presents a comprehensive failure analysis of local rainfallinduced landslides based on topographical and geological information.Rainfall measurement data were gathered from two rainfall stations close to the study area.The rainfall records show that the total monthly rainfalls in 2018 were significantly higher than the average monthly rainfalls over the past decade.Site investigation started with an unmanned aerial photogrammetric survey to generate a digital elevation model.Then,dynamic probing test,microtremor survey,and electrical resistivity survey were carried out along undisturbed soils beside the failed slope to evaluate the thickness of the soft soil cover on top of the rock basement.During the site survey,residual soil samples were collected to determine engineering properties in the laboratory.Finally,a slope stability analysis was performed to assess the landslide hazard based on the results of aerial photogrammetric survey,field exploration,and laboratory tests.The slope stability analysis and rainfall records revealed that the Huay Khab landslide was mainly caused by an increase in the water content of residual soils due to the prolonged rainfall which led to a sharp decrease in the shear strength.This leads to the conclusion that the proposed landslide investigation program could be used to assess the potential of landslide failure due to prolonged rainfall on a local scale. 展开更多
关键词 Rainfall-induced landslide Field exploration Digital Elevation Model slope stability analysis Northern Thailand
下载PDF
Numerical three-dimensional modeling of earthen dam piping failure
20
作者 Zhengang Wang 《Water Science and Engineering》 EI CAS CSCD 2024年第1期72-82,共11页
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl... A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation. 展开更多
关键词 3D dam breach model 2D shallow water equations 3D slope stability analysis Piping failure Teton Dam Quail Creek Dike
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部