The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid...The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.展开更多
According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic mo...According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic model of cooling rate was established. The calculation value approximately agrees with the experimental result. Laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate increases along the plate direction gradually when the initial flow velocity is lower than 1 m/s, the melt cooling rate keeps nearly a constant when the initial flow velocity is 1 m/ s, when the initial flow velocity is higher than 1 m/s, the melt cooling rate decreases gradually. The melt cooling rate of cooling sloping plate process can reach 102-103 K/s and belongs to meta-rapid solidification scope.展开更多
A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results...A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results show that the experimental result is approximately agreed with the calculation value. The effect of the casting temperature on the change rate of the solid fraction is not obvious. But the beginning solidification length is greatly influenced by the casting temperature. The beginning solidification length increases with the increment of the casting temperature. The effect of the sloping angle on the solid fraction becomes obvious with the increment of the sloping plate length. The solid fraction increases sharply with the decrease of the initial thickness of the melt. The melt initial thickness between 15 and 20 mm is suggested.展开更多
Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but al...Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.展开更多
A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the proc...A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.展开更多
A novel continuous semisolid rolling process for producing AZ31 alloy strip was developed. The process parameters were optimized, and microstructure and properties of AZ31 alloy prepared by the process were studied. T...A novel continuous semisolid rolling process for producing AZ31 alloy strip was developed. The process parameters were optimized, and microstructure and properties of AZ31 alloy prepared by the process were studied. The results reveal that primary grains of the strip become coarse, and the grain structure transforms from round shape to dendrite with the increment of casting temperature gradually. Eutectic phase fraction and primary grain size increase with the increment of roll speed. The primary grain size decreases firstly and then increases with the increment of the vibration frequency correspondingly. When the casting temperature is from 650℃to 690℃, the roll speed is 0.069 m·s- 1, and the vibration frequency is about 80 Hz, AZ31 alloy strip with a cross section size of 4 mm×160 mm was prepared by the proposed process. The ultimate tensile strength and elongation are improved 1% and 57 %, respectively.展开更多
文摘The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows.
基金Funded by the National Natural Science Foundation for Outstanding Young Scholars of China(No.51222405)the National Natural Science Foundation of China(No.51034002)+2 种基金the Fok Ying Tong Education Foundation(No.132002)the Basic Scientific Research Operation of Center University(N120602002,N120502001)the Chinese National Programfor Fundamental Research and Development(No.2011CB610405)
文摘According to the principle of grain refining and slurry preparation by cooling sloping plate process, the distributions of boundary layers during melt treatment by cooling sloping plate were studied, and mathematic model of cooling rate was established. The calculation value approximately agrees with the experimental result. Laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate increases along the plate direction gradually when the initial flow velocity is lower than 1 m/s, the melt cooling rate keeps nearly a constant when the initial flow velocity is 1 m/ s, when the initial flow velocity is higher than 1 m/s, the melt cooling rate decreases gradually. The melt cooling rate of cooling sloping plate process can reach 102-103 K/s and belongs to meta-rapid solidification scope.
基金supported by the National Natural Science Foundation of China (Nos.51034002 and 50974038)National Program for Fundamental Research and Development of China (No.2011CB610405)
文摘A mathematic model of the solid fraction during rheo-casting by the cooling sloping plate process was established, and the effects of the process parameters on the solid fraction were analyzed. The calculation results show that the experimental result is approximately agreed with the calculation value. The effect of the casting temperature on the change rate of the solid fraction is not obvious. But the beginning solidification length is greatly influenced by the casting temperature. The beginning solidification length increases with the increment of the casting temperature. The effect of the sloping angle on the solid fraction becomes obvious with the increment of the sloping plate length. The solid fraction increases sharply with the decrease of the initial thickness of the melt. The melt initial thickness between 15 and 20 mm is suggested.
基金financially supported by the National Natural Science Foundation of China (Nos. 51034002 and 50974038)the Fok Ying Tong Education Foundation (No. 132002)National Basic Research Program of China (973 program)(No.2011CB610405)
文摘Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.
基金Project (51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject (50974038) supported by the National Natural Science Foundation of China+1 种基金Project (132002) supported by the Fok Ying Tong Education Foundation, ChinaProject (2011CB610405) supported by the National Basic Research Program of China
文摘A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.
基金financially supported by the National Natural Science Foundation for Outstanding Young Scholars of China (No. 51222405)the National Natural Science Foundation of China (No. 51034002)+1 种基金the Fok Ying-Tong Education Foundation (No. 132002)the National Basic Research Program of China(No. 2011CB610405)
文摘A novel continuous semisolid rolling process for producing AZ31 alloy strip was developed. The process parameters were optimized, and microstructure and properties of AZ31 alloy prepared by the process were studied. The results reveal that primary grains of the strip become coarse, and the grain structure transforms from round shape to dendrite with the increment of casting temperature gradually. Eutectic phase fraction and primary grain size increase with the increment of roll speed. The primary grain size decreases firstly and then increases with the increment of the vibration frequency correspondingly. When the casting temperature is from 650℃to 690℃, the roll speed is 0.069 m·s- 1, and the vibration frequency is about 80 Hz, AZ31 alloy strip with a cross section size of 4 mm×160 mm was prepared by the proposed process. The ultimate tensile strength and elongation are improved 1% and 57 %, respectively.