To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the sub...To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.展开更多
In wastewater treatment plants (WWTPs), a secondary settler acts as a clarifier, sludge thickener, and sludge storage tank during peak flows and therefore plays an important role in the performance of the activated ...In wastewater treatment plants (WWTPs), a secondary settler acts as a clarifier, sludge thickener, and sludge storage tank during peak flows and therefore plays an important role in the performance of the activated sludge process. Sludge thickening occurs in the lower portions of secondary clarifiers during their operation. In this study, by detecting the hindered zone from the complete thickening process of activated sludge, a simple model for the sludge thickening velocity, us = aXb ( a =0.9925SSFI3.5, b = - 3.5411n( SS VI3.5 ) +12.973), describing the potential and performance of activated sludge thickening in the hindered zone was developed. However, sludge thickening in the compression zone was not studied because sludge in the compression zone showed limited thickening. This empirical model was developed using batch settling data obtained from four WWTPs and validated using measured data from a fifth WWTP to better study sludge thickening. To explore different sludge settling and thickening mechanisms, the curves of sludge thickening and sludge settling were compared. Finally, it was found that several factors including temperature, stirring, initial depth, and polymer conditioning can lead to highly concentrated return sludge and biomass in a biologic reactor.展开更多
Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rat...Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rates, as well as pH and sludge settling performance, were evaluated as functions of the metal dosages. Furthermore, models relating certain parameters to the dosage of chemicals have been derived. Corresponding parameters in the ASM2d and the secondary settler models, included in the Benchmark Simulation Model No 1 (BSM1), have been modified to take the metal influence into consideration. Based on the effluent limits and penalty policy of China, an equivalent evaluation method was derived for the total cost assessment. A large number of 300-day steady-state and 14-day open-loop dynamic simulations were performed to demonstrate the difference in behavior between the original and the modified BSM1. The results show that 1) both in low and high mole concentrations, Fe^3+ addition results in a higher phosphorus removal rate than Al^3+; 2) the sludge settling velocity will increase due to the metal addition; 3) the respiration rate of the activated sludge is decreased more by the dosage of Al^3+ than Fe^3+; 4) the inhibition of Al^3+ on the nitrification rate is stronger than that of Fe^3+; 5) the total operating cost will reach the minimum point for smaller dosages of Fe^3+, but always increase with Al^3+ addition.展开更多
基金the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.
文摘In wastewater treatment plants (WWTPs), a secondary settler acts as a clarifier, sludge thickener, and sludge storage tank during peak flows and therefore plays an important role in the performance of the activated sludge process. Sludge thickening occurs in the lower portions of secondary clarifiers during their operation. In this study, by detecting the hindered zone from the complete thickening process of activated sludge, a simple model for the sludge thickening velocity, us = aXb ( a =0.9925SSFI3.5, b = - 3.5411n( SS VI3.5 ) +12.973), describing the potential and performance of activated sludge thickening in the hindered zone was developed. However, sludge thickening in the compression zone was not studied because sludge in the compression zone showed limited thickening. This empirical model was developed using batch settling data obtained from four WWTPs and validated using measured data from a fifth WWTP to better study sludge thickening. To explore different sludge settling and thickening mechanisms, the curves of sludge thickening and sludge settling were compared. Finally, it was found that several factors including temperature, stirring, initial depth, and polymer conditioning can lead to highly concentrated return sludge and biomass in a biologic reactor.
文摘Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rates, as well as pH and sludge settling performance, were evaluated as functions of the metal dosages. Furthermore, models relating certain parameters to the dosage of chemicals have been derived. Corresponding parameters in the ASM2d and the secondary settler models, included in the Benchmark Simulation Model No 1 (BSM1), have been modified to take the metal influence into consideration. Based on the effluent limits and penalty policy of China, an equivalent evaluation method was derived for the total cost assessment. A large number of 300-day steady-state and 14-day open-loop dynamic simulations were performed to demonstrate the difference in behavior between the original and the modified BSM1. The results show that 1) both in low and high mole concentrations, Fe^3+ addition results in a higher phosphorus removal rate than Al^3+; 2) the sludge settling velocity will increase due to the metal addition; 3) the respiration rate of the activated sludge is decreased more by the dosage of Al^3+ than Fe^3+; 4) the inhibition of Al^3+ on the nitrification rate is stronger than that of Fe^3+; 5) the total operating cost will reach the minimum point for smaller dosages of Fe^3+, but always increase with Al^3+ addition.