The effects of synthetic Smac peptide (SmacN7) on chemotherapeutic sensitivity of bladder cancer cells were investigated. SmacN7 penetratin peptide was synthesized and delivered into T24 cells. MTT assay was used to...The effects of synthetic Smac peptide (SmacN7) on chemotherapeutic sensitivity of bladder cancer cells were investigated. SmacN7 penetratin peptide was synthesized and delivered into T24 cells. MTT assay was used to evaluate the viability of T24 cells induced by low-dosage of MMC Flow cytometry was used to analyze the proportions of apoptosis. Western blot was used to detect the expression of XIAP and Caspase-3. The activity of Caspase-3 was measured and the effect of SmacN7 combined with MMC on T24 cell lines was also determined. The results showed that SmacN7 penetratin peptide could successfully interact with endogenous XIAP, increase the proportions of apoptosis of T24 cell lines induced by low-dosage of MMC in a dose-and time-dependent manner. An obvious down-regulation of XIAP expression and up-regulation of Caspase-3 was identi-fied by Western blot. The activity of Caspase-3 in experimental group was significantly increased as compared with that in the control group. As compared with MMC group, the viability of T24 cells in SmacN7 penetratin peptide+MMC group was markedly decreased to 2.22 and 3.61 folds at 24 h and 48 h respectively. It was concluded that SmacN7 penetratin peptide could act as a cell-permeable IAP inhibitor, inhibit the proliferation, induce apoptosis and enhance the chemo-sensitivity of bladder cancer cells to MMC. These findings indicate that SmacN7 penetratin peptide may be a very promising ageut for bladder cancer treatment when used in combination with chemotherapy.展开更多
In order to develop an ELISA assay with synthetic peptides for the detection of antibody to the nonstructural proteins of foot-and-mouth disease virus, specific peptides were synthesized by a solid-phase method accord...In order to develop an ELISA assay with synthetic peptides for the detection of antibody to the nonstructural proteins of foot-and-mouth disease virus, specific peptides were synthesized by a solid-phase method according to FMDV NSPs B-cell epitopes, and were conjugated to carrier protein BSA. An ELISA system was developed to detect FMDV NSPs antibody with the conjugated proteins as the coating antigen. The optimal coating concentration of the antigen was determined as 2.5 μg mL-1. The comparative study of this assay with UBI NSP ELISA kit and national commercial 3ABC ELISA kit in the detection of 199 serum samples showed that they were very coincident, and the identity rates were 96.48 and 97.48%, respectively. The development of ELISA using the synthetic peptides as coating antigen is specific, reproducible, stable, and easy, and can be used to differentiate FMDV infected pigs from immunized pigs.展开更多
Three synthetic peptides representing distinct antigenic epitopes from three genomic regions of hepatitis E virus (HEV) were used to develop enzyme-linked immunoserbent assay ELISA for detecting antibodies to HEV. Bot...Three synthetic peptides representing distinct antigenic epitopes from three genomic regions of hepatitis E virus (HEV) were used to develop enzyme-linked immunoserbent assay ELISA for detecting antibodies to HEV. Both IgG and IgM antibodies to HEV were d展开更多
Matrix-assisted laser desorption/ionization(MALDI)mass spectrometry(MS)plays an indispensable role in analyzing protein covalent structures.The reliable identification of amino acid residues and modifications relies o...Matrix-assisted laser desorption/ionization(MALDI)mass spectrometry(MS)plays an indispensable role in analyzing protein covalent structures.The reliable identification of amino acid residues and modifications relies on the mass accuracy,which is highly dependent on calibration.However,the accuracy provided by the currently available calibrants still needs further improvement in terms of compatibility with multiple tandem MS modes or ion polarity modes,calibratable range,and minimizing suppression of and interference with analyte signals.Here aiming at developing a versatile calibrant to solve these problem,we designed a synthetic peptide format of calibrant R_x(GDP_n)_m(referred to as“Gly-Asp-Pro,GDP”)according to the chemical natures of amino acids and polypeptide fragmentation rules in tandem MS.With four types of amino acid residues selected and arranged through rational designs,a GDP peptide produces highly regulated fragments that give rise to evenly spaced signals in each tandem MS mode and is compatible with both positive and negative ion modes.In internal calibration,its regulated fragmentation pattern minimizes interference with analyte signals,and using a single peptide as the input minimizes suppression of the analyte signals.As demonstrated by analyses of proteins including monoclonal antibody and Aβ-42,these features allowed significant increase of the mass accuracy and precision,which improved sequence coverage and sequence resolution in sequence analyses(including de novo sequencing).This rational design strategy may also inspire further development of synthetic calibrants that benefit structural analysis of biomolecules.展开更多
Human induced pluripotent stem cell(hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine.However,there remains a necessity to refine the bio-physi...Human induced pluripotent stem cell(hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine.However,there remains a necessity to refine the bio-physical and biochemical parameters that govern kidney organoid formation.Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation.Here,we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels(SAPHs)of variable stiffness(storage modulus,G′).The resulting organoids con-tained complex structures comparable to those differentiated within the animal-derived matrix,Matrigel.Single-cell RNA sequencing(scRNA-seq)was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface.A total of 13,179 cells were analysed,revealing 14 distinct clusters.Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids,while SAPH-derived organoids were enriched for stromal-associated cell populations.Notably,dif-ferentiation within a higher G’SAPH generated podocytes with more mature gene expression profiles.Addi-tionally,maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types,which are a known limitation of current kidney organoid protocols.This work demonstrates the utility of syn-thetic peptide-based hydrogels with a defined stiffness,as a minimally complex microenvironment for the selected differentiation of kidney organoids.展开更多
Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. The...Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals.展开更多
Background Numerous studies have reported a relationship between hepatitis C virus (HCV) genotype and the response to interferon therapy. Despite high sensitivity and specificity, genotyping methods can be performed...Background Numerous studies have reported a relationship between hepatitis C virus (HCV) genotype and the response to interferon therapy. Despite high sensitivity and specificity, genotyping methods can be performed only on HCV RNA positive samples. Serotyping might be a rapid and cost effective method for determining HCV genotypes, especially in patients with previously undetectable HCV RNA. In this study, an enzyme linked immunosorbent assay (ELISA) method for HCV serotyping with the genotype specific, synthetic peptides derived from HCV nonstructural 5a (NS5A) region was developed. Methods Based on 45 sequences, representing HCV genotypes 1-6 from Genebank, we synthesised 305 overlapping 30-mer peptides within NS5A region at positions 2182-2343 of HCV. All peptides for antigenic reactivity were tested by enzyme immunoassay with 69 human sera with antiHCV positive representing genotype 1-6. Forty hepatitis C patient sera were serotyped using serotype specific, synthetic peptides and genotyped by sequencing analysis. Results The correspondence of amino acids in HCV NS5A region with amino acids in positions 2182-2343 was very low among different genotype peptides. The highly conserved sequences were residues 2182-2211 (R1), 2272-2301 (R7) and 2302-2331 (R9): the highly variable 2212-2241 (R3) and 2257-2286 (R6). Using 305 peptides, antigenic regions were located in R3, R7 and R9. Eighteen peptides from highly conserved region representing genotypes 1 to 6 showed broad immunoreactivity with sera containing antibody to all HCV genotypes. Immunoreactivity of the peptides from highly variable region was stronger with similar genotype sera. Twelve unique peptides showed highly, genotype specific, reactivity with types 1 and 3 sera. Type 2 genotype specific peptides had cross reaction with type 3 serum. No type 4, 5 or 6 specific peptides were selected. The serotyping results showed high agreement with sequencing analysis. Conclusions The major antigenic regions in HCV NS5A region were at 2212-2241(R3), 2272-2301(R7) and 2302-2331(R9). Eighteen peptides from highly conserved region show genotype independent, immunoreactivity, useful for antiHCV antibody test. Twelve peptides from highly variable region show genotype 1 and 3 dependent immunoreactivity, useful for determining HCV serotype, especially for patients with previously undetectable HCV RNA.展开更多
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest...The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.展开更多
Endoglucanases are the main cellulolytic enzymes digestion as well as its good kinetic properties make it an attractive of Anoplophora glabripennis. Their high activities in cellulose target for development of cellula...Endoglucanases are the main cellulolytic enzymes digestion as well as its good kinetic properties make it an attractive of Anoplophora glabripennis. Their high activities in cellulose target for development of cellulase inhibitors. In this study, random pepfide phage display technology was employed to identify peptides that bound the AgEG1, a member of endoglucanase isozymes. Phage clones with peptide LPPNPTK and XPP (X is residue T, L, A or H) motif frequently occurred in the selected phage population and showed a higher phage recovery than other clones. Peptide LPPNPTK was chemically synthesized and characterized tor its binding activities to AgEG1. The synthetic peptide exhibited high specificity for AgEG1. The peptide LPPNPTK has the potential to be developed into inhibitors of the endoglucanase of A. glabripennis.展开更多
基金a grant from the Specialized Research Fund for the Doctoral Program of Higher Educa-tion of China(No.20060487066)
文摘The effects of synthetic Smac peptide (SmacN7) on chemotherapeutic sensitivity of bladder cancer cells were investigated. SmacN7 penetratin peptide was synthesized and delivered into T24 cells. MTT assay was used to evaluate the viability of T24 cells induced by low-dosage of MMC Flow cytometry was used to analyze the proportions of apoptosis. Western blot was used to detect the expression of XIAP and Caspase-3. The activity of Caspase-3 was measured and the effect of SmacN7 combined with MMC on T24 cell lines was also determined. The results showed that SmacN7 penetratin peptide could successfully interact with endogenous XIAP, increase the proportions of apoptosis of T24 cell lines induced by low-dosage of MMC in a dose-and time-dependent manner. An obvious down-regulation of XIAP expression and up-regulation of Caspase-3 was identi-fied by Western blot. The activity of Caspase-3 in experimental group was significantly increased as compared with that in the control group. As compared with MMC group, the viability of T24 cells in SmacN7 penetratin peptide+MMC group was markedly decreased to 2.22 and 3.61 folds at 24 h and 48 h respectively. It was concluded that SmacN7 penetratin peptide could act as a cell-permeable IAP inhibitor, inhibit the proliferation, induce apoptosis and enhance the chemo-sensitivity of bladder cancer cells to MMC. These findings indicate that SmacN7 penetratin peptide may be a very promising ageut for bladder cancer treatment when used in combination with chemotherapy.
基金supported by the National Natural Science Foundation of China (30730068)the National High-Tech R&D Program of China (863 Program,2007AA100606)
文摘In order to develop an ELISA assay with synthetic peptides for the detection of antibody to the nonstructural proteins of foot-and-mouth disease virus, specific peptides were synthesized by a solid-phase method according to FMDV NSPs B-cell epitopes, and were conjugated to carrier protein BSA. An ELISA system was developed to detect FMDV NSPs antibody with the conjugated proteins as the coating antigen. The optimal coating concentration of the antigen was determined as 2.5 μg mL-1. The comparative study of this assay with UBI NSP ELISA kit and national commercial 3ABC ELISA kit in the detection of 199 serum samples showed that they were very coincident, and the identity rates were 96.48 and 97.48%, respectively. The development of ELISA using the synthetic peptides as coating antigen is specific, reproducible, stable, and easy, and can be used to differentiate FMDV infected pigs from immunized pigs.
文摘Three synthetic peptides representing distinct antigenic epitopes from three genomic regions of hepatitis E virus (HEV) were used to develop enzyme-linked immunoserbent assay ELISA for detecting antibodies to HEV. Both IgG and IgM antibodies to HEV were d
基金supported by grants from the National Natural Science Foundation of China(No.21974069)Open Fund Programs of Shenzhen Bay Laboratory(No.SZBL2020090501001)。
文摘Matrix-assisted laser desorption/ionization(MALDI)mass spectrometry(MS)plays an indispensable role in analyzing protein covalent structures.The reliable identification of amino acid residues and modifications relies on the mass accuracy,which is highly dependent on calibration.However,the accuracy provided by the currently available calibrants still needs further improvement in terms of compatibility with multiple tandem MS modes or ion polarity modes,calibratable range,and minimizing suppression of and interference with analyte signals.Here aiming at developing a versatile calibrant to solve these problem,we designed a synthetic peptide format of calibrant R_x(GDP_n)_m(referred to as“Gly-Asp-Pro,GDP”)according to the chemical natures of amino acids and polypeptide fragmentation rules in tandem MS.With four types of amino acid residues selected and arranged through rational designs,a GDP peptide produces highly regulated fragments that give rise to evenly spaced signals in each tandem MS mode and is compatible with both positive and negative ion modes.In internal calibration,its regulated fragmentation pattern minimizes interference with analyte signals,and using a single peptide as the input minimizes suppression of the analyte signals.As demonstrated by analyses of proteins including monoclonal antibody and Aβ-42,these features allowed significant increase of the mass accuracy and precision,which improved sequence coverage and sequence resolution in sequence analyses(including de novo sequencing).This rational design strategy may also inspire further development of synthetic calibrants that benefit structural analysis of biomolecules.
基金This publication has emanated from research conducted with the financial support of Science Foundation Ireland(SFI)co-funded under the European Regional Development Fund under Grant Number 13/RC/2073_P2+1 种基金The authors acknowledge support from Science Foundation Ireland(16/IA/4584)19/FFP/6833.J.K.W.would also like to acknowledge Royal Society of Chemistry grant(M19-6613).
文摘Human induced pluripotent stem cell(hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine.However,there remains a necessity to refine the bio-physical and biochemical parameters that govern kidney organoid formation.Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation.Here,we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels(SAPHs)of variable stiffness(storage modulus,G′).The resulting organoids con-tained complex structures comparable to those differentiated within the animal-derived matrix,Matrigel.Single-cell RNA sequencing(scRNA-seq)was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface.A total of 13,179 cells were analysed,revealing 14 distinct clusters.Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids,while SAPH-derived organoids were enriched for stromal-associated cell populations.Notably,dif-ferentiation within a higher G’SAPH generated podocytes with more mature gene expression profiles.Addi-tionally,maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types,which are a known limitation of current kidney organoid protocols.This work demonstrates the utility of syn-thetic peptide-based hydrogels with a defined stiffness,as a minimally complex microenvironment for the selected differentiation of kidney organoids.
基金supported by grants from the National Natural Science Foundation of China(39500137)the Natural Science Foundation of Yunnan(95C0099Q)+2 种基金Key Scientific and Technological projects of China(2004BA719A14)and Yunnan(2004NG12)CAS Projects(STZ-01-17,KSCX2-SW-216,KSCXl-SW-1l)National 863 Program(2003AA2 19142).
文摘Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals.
文摘Background Numerous studies have reported a relationship between hepatitis C virus (HCV) genotype and the response to interferon therapy. Despite high sensitivity and specificity, genotyping methods can be performed only on HCV RNA positive samples. Serotyping might be a rapid and cost effective method for determining HCV genotypes, especially in patients with previously undetectable HCV RNA. In this study, an enzyme linked immunosorbent assay (ELISA) method for HCV serotyping with the genotype specific, synthetic peptides derived from HCV nonstructural 5a (NS5A) region was developed. Methods Based on 45 sequences, representing HCV genotypes 1-6 from Genebank, we synthesised 305 overlapping 30-mer peptides within NS5A region at positions 2182-2343 of HCV. All peptides for antigenic reactivity were tested by enzyme immunoassay with 69 human sera with antiHCV positive representing genotype 1-6. Forty hepatitis C patient sera were serotyped using serotype specific, synthetic peptides and genotyped by sequencing analysis. Results The correspondence of amino acids in HCV NS5A region with amino acids in positions 2182-2343 was very low among different genotype peptides. The highly conserved sequences were residues 2182-2211 (R1), 2272-2301 (R7) and 2302-2331 (R9): the highly variable 2212-2241 (R3) and 2257-2286 (R6). Using 305 peptides, antigenic regions were located in R3, R7 and R9. Eighteen peptides from highly conserved region representing genotypes 1 to 6 showed broad immunoreactivity with sera containing antibody to all HCV genotypes. Immunoreactivity of the peptides from highly variable region was stronger with similar genotype sera. Twelve unique peptides showed highly, genotype specific, reactivity with types 1 and 3 sera. Type 2 genotype specific peptides had cross reaction with type 3 serum. No type 4, 5 or 6 specific peptides were selected. The serotyping results showed high agreement with sequencing analysis. Conclusions The major antigenic regions in HCV NS5A region were at 2212-2241(R3), 2272-2301(R7) and 2302-2331(R9). Eighteen peptides from highly conserved region show genotype independent, immunoreactivity, useful for antiHCV antibody test. Twelve peptides from highly variable region show genotype 1 and 3 dependent immunoreactivity, useful for determining HCV serotype, especially for patients with previously undetectable HCV RNA.
基金supported by the National Key Research and Development Program of China (2021YFC2100800)the National Natural Science Foundation of China (22078238,21961132005,and 21908160)+1 种基金the Open Funding Project of the National Key Laboratory of Biochemical Engineeringthe Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.
基金Supported by the National Natural Science Foundation of China (Grant No. 39900116)
文摘Endoglucanases are the main cellulolytic enzymes digestion as well as its good kinetic properties make it an attractive of Anoplophora glabripennis. Their high activities in cellulose target for development of cellulase inhibitors. In this study, random pepfide phage display technology was employed to identify peptides that bound the AgEG1, a member of endoglucanase isozymes. Phage clones with peptide LPPNPTK and XPP (X is residue T, L, A or H) motif frequently occurred in the selected phage population and showed a higher phage recovery than other clones. Peptide LPPNPTK was chemically synthesized and characterized tor its binding activities to AgEG1. The synthetic peptide exhibited high specificity for AgEG1. The peptide LPPNPTK has the potential to be developed into inhibitors of the endoglucanase of A. glabripennis.