Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindma...Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.展开更多
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the...We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.展开更多
We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that t...We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.展开更多
An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simula...An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.展开更多
Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial ...Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.展开更多
Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,w...Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.展开更多
The sensor virus is a serious threat,as an attacker can simply send a single packet to compromise the entire sensor network.Epidemics become drastic with link additions among sensors when the small world phenomena occ...The sensor virus is a serious threat,as an attacker can simply send a single packet to compromise the entire sensor network.Epidemics become drastic with link additions among sensors when the small world phenomena occur.Two immunization strategies,uniform immunization and temporary immunization,are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses.With the former strategy,the infection extends exponentially,although the immunization effectively reduces the contagion speed.With the latter strategy,recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered.The oscillations come from the small-world structure and the temporary immunization.Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies.展开更多
The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection an...The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.展开更多
We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the ne...We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman-Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.展开更多
We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown...We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.展开更多
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general effic...In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.展开更多
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transiti...Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.展开更多
The small-world phenomenon is found in many self-organising systems. Systems configured in small-world networks spread information more easily than in random or regular lattice-type networks. Whilst it is a known fact...The small-world phenomenon is found in many self-organising systems. Systems configured in small-world networks spread information more easily than in random or regular lattice-type networks. Whilst it is a known fact that small-world networks have short average path length and high clustering coefficient in self-organising systems, the ego centralities that maintain the cohesiveness of small-world network have not been formally defined. Here we show that instantaneous events such as the release of news items via Twitter, coupled with active community arguments related to the news item form a particular type of small-world network. Analysis of the centralities in the network reveals that community arguments maintain the small-world network whilst ac-tively maintaining the cohesiveness and boundary of the group. The results demonstrate how an active Twitter community unconsciously forms a small-world network whilst interacting locally with a bordering community. Over time, such local interactions brought about the global emergence of the small-world network, connecting media channels with human activities. Understanding the small-world phenomenon in relation to online social or civic movement is important, as evident in the spate of online activists that tipped the power of governments for the better or worst in recent times. The support, or removal of high centrality nodes in such networks has important ramifications in the self-expression of society and civic discourses. The presentation in this article anticipates further exploration of man-made self-organising systems where a larger cluster of adhoc and active community maintains the overall cohesiveness of the network.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with inc...This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.展开更多
The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is de...The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is designed to satisfy the sliding con- dition. The outer synchronization between two irregular coupled complex networks with different initial conditions is implemented via the designed controllers with the corre- sponding parameter update laws. The chaos synchronization of two small-world networks consisting of N uncertain identical Lorenz systems is achieved to demonstrate the appli- cations of the proposed approach.展开更多
We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant st...We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.展开更多
In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simula...In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.展开更多
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
基金supported by the National Natural Science Foundation of China (Grant No 10872014)
文摘Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001)the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)
文摘We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
基金supported by the Research Foundation for Outstanding Young Teachers of China University of Geosciences, China (Grant No CUGNL0637)the National Natural Science Foundation of China (Grant Nos 60573005, 60603006 and 60628301)
文摘We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.60974004)the Science Foundation of Ministry of Housing and Urban-Rural Development,China(Grant No.2011-K5-31)
文摘An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.
文摘Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.
文摘Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.
文摘The sensor virus is a serious threat,as an attacker can simply send a single packet to compromise the entire sensor network.Epidemics become drastic with link additions among sensors when the small world phenomena occur.Two immunization strategies,uniform immunization and temporary immunization,are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses.With the former strategy,the infection extends exponentially,although the immunization effectively reduces the contagion speed.With the latter strategy,recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered.The oscillations come from the small-world structure and the temporary immunization.Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172103)
文摘The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.
基金supported by the National Basic Research Program of China (No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 60744003, 10635040, 10532060 and 10472116)the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman-Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.
文摘We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61101117,61171099,and 61362008)the National Key Scientific and Technological Project of China (Grant No.2012ZX03004005002)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.BUPT2012RC0112)the Natural Science Foundation of Jiangxi Province,China (Grant No.20132BAB201018)
文摘In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11135001 and 11174034)
文摘Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
文摘The small-world phenomenon is found in many self-organising systems. Systems configured in small-world networks spread information more easily than in random or regular lattice-type networks. Whilst it is a known fact that small-world networks have short average path length and high clustering coefficient in self-organising systems, the ego centralities that maintain the cohesiveness of small-world network have not been formally defined. Here we show that instantaneous events such as the release of news items via Twitter, coupled with active community arguments related to the news item form a particular type of small-world network. Analysis of the centralities in the network reveals that community arguments maintain the small-world network whilst ac-tively maintaining the cohesiveness and boundary of the group. The results demonstrate how an active Twitter community unconsciously forms a small-world network whilst interacting locally with a bordering community. Over time, such local interactions brought about the global emergence of the small-world network, connecting media channels with human activities. Understanding the small-world phenomenon in relation to online social or civic movement is important, as evident in the spate of online activists that tipped the power of governments for the better or worst in recent times. The support, or removal of high centrality nodes in such networks has important ramifications in the self-expression of society and civic discourses. The presentation in this article anticipates further exploration of man-made self-organising systems where a larger cluster of adhoc and active community maintains the overall cohesiveness of the network.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847140)the Doctorial Start-up Fund of Lanzhou University of Technology (Grant No 409)
文摘This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(No.11232009)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘The outer synchronization of irregular coupled complex networks is inves- tigated with nonidentical topological structures. The switching gain is estimated by an adaptive technique, and a sliding mode controller is designed to satisfy the sliding con- dition. The outer synchronization between two irregular coupled complex networks with different initial conditions is implemented via the designed controllers with the corre- sponding parameter update laws. The chaos synchronization of two small-world networks consisting of N uncertain identical Lorenz systems is achieved to demonstrate the appli- cations of the proposed approach.
基金National Natural Science Foundation of China under Grant No.10675060the Doctoral Foundation of the Ministry of Education of China under Grant No.2002055009
文摘We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61101117 and 61171100)the National Key Scientific and Technological Project of China(Grant Nos.2012ZX03004005002 and 2013ZX03003012)+3 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2014AA01A701)the Special Youth Science Foundation of Jiangxi Province of China(Grant No.20133ACB21007)the Natural Science Foundation of Jiangxi Province of China(Grant Nos.20132BAB201018 and 20132BAB201018)the Fundamental Research Funds for the Central Universities,China(Grant No.BUPT2012RC0112)
文摘In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.