期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
子模式典型相关分析及其在人脸识别中的应用 被引量:25
1
作者 洪泉 陈松灿 倪雪蕾 《自动化学报》 EI CSCD 北大核心 2008年第1期21-30,共10页
传统的典型相关分析(CCA)是有效的特征提取方法之一,已广泛应用于包括人脸识别在内的模式识别的许多领域.但在人脸识别为代表的高维小样本问题上该方法存在如下不足:1)人脸识别的小样本特性使CCA两组特征矢量构成的总体协方差矩阵奇异,... 传统的典型相关分析(CCA)是有效的特征提取方法之一,已广泛应用于包括人脸识别在内的模式识别的许多领域.但在人脸识别为代表的高维小样本问题上该方法存在如下不足:1)人脸识别的小样本特性使CCA两组特征矢量构成的总体协方差矩阵奇异,难以直接应用;2)作为一种全局线性投影方法,不足以很好地描述非线性的人脸识别问题;3)缺乏对局部变化的识别鲁棒性.本文受已提出的子模式主分量分析(SpPCA)的启发,提出了子模式典型相关分析(SpCCA).该方法将局部与全局特征矢量之间的相关性特征作为有效的判别信息,既达到了融合局部与全局信息的目的,又消除了特征之间的信息冗余.通过子模式的划分,SpCCA避免了小样本问题,更好地描述了非线性的人脸识别问题;并通过投票方式融合结果,增强了对局部变化的鲁棒性.在AR与Yale两个人脸数据集上的实验证实了该方法比对比方法不仅有更优的识别性能,而且更加稳定和鲁棒. 展开更多
关键词 典型相关分析(CCA) 子模式主分量分析(SpPCA) 子模式典型相关分析(SpCCA) 小样本问题 人脸识别
下载PDF
采用虚拟训练样本优化正则化判别分析 被引量:16
2
作者 王卫东 郑宇杰 杨静宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第9期1327-1331,共5页
在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵... 在模式特征子空间中选取一组标准正交向量,使用这组向量可以生成大量的虚拟训练样本,从而实现对协方差矩阵的优化.在ORL人脸库上的实验表明,优化后协方差矩阵的特征值均显著变大,使该矩阵的逆阵稳定性得到了提高.利用优化的协方差矩阵对正则化判别分析方法进行优化,其模式分类正确率有显著提高. 展开更多
关键词 小样本问题 正则化判别分析 虚拟样本 优化方法 特征提取 人脸识别
下载PDF
基于Gabor变换和双方向PCA的人脸识别 被引量:4
3
作者 聂祥飞 谭泽富 郭军 《计算机工程与应用》 CSCD 北大核心 2007年第36期13-15,113,共4页
提出了一种可以解决小样本问题的人脸识别新算法。算法首先把人脸图像经过Gabor小波变换后得到的每个输出图像都看成是独立的样本,从而大大增加了每一类人脸样本的样本数。然后采用双方向PCA算法来提取人脸特征,并专门设计了针对人脸特... 提出了一种可以解决小样本问题的人脸识别新算法。算法首先把人脸图像经过Gabor小波变换后得到的每个输出图像都看成是独立的样本,从而大大增加了每一类人脸样本的样本数。然后采用双方向PCA算法来提取人脸特征,并专门设计了针对人脸特征矩阵的最近邻分类器和最小距离分类器来进行分类判决。在ORL人脸库和FERET人脸库中的实验结果表明,算法能有效地解决人脸识别中的小样本问题,甚至当每类训练样本数仅为1时,也能得到较高的识别率。 展开更多
关键词 人脸识别 小样本问题 双方向PCA GABOR变换
下载PDF
基于核的Fisher非线性最佳鉴别分析在人脸识别中的应用 被引量:9
4
作者 成新民 蒋云良 +1 位作者 胡文军 吴小红 《中国图象图形学报》 CSCD 北大核心 2007年第8期1395-1400,共6页
抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作... 抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作为Fisher准则,来得到最佳非线性鉴别特征,然后针对此方法存在的病态问题,进一步在类内散度阵的零空间中求解最佳非线性鉴别矢量。基于ORL人脸数据库的实验表明,该新方法抽取的非线性最佳鉴别特征明显优于Fisher线性鉴别分析(FLDA)的线性特征和广义鉴别分析(GDA)的非线性特征。 展开更多
关键词 人脸识别 Fisher非线性鉴别分析 核方法 小样本问题 病态问题
下载PDF
基于LDA算法的人脸识别方法的比较研究 被引量:20
5
作者 韩争胜 李映 张艳宁 《微电子学与计算机》 CSCD 北大核心 2005年第7期131-133,138,共4页
线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于LDA的人脸识别。文章对几种基于LDA的人脸识别方... 线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于LDA的人脸识别。文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fish-erfaces、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。 展开更多
关键词 线性判别分析(LDA) 人脸识别 EIGENFACES Fisherfaces 小样本问题
下载PDF
小样本情况下Fisher线性鉴别分析的理论及其验证 被引量:17
6
作者 陈伏兵 张生亮 +1 位作者 高秀梅 杨静宇 《中国图象图形学报》 CSCD 北大核心 2005年第8期984-991,共8页
线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。近几年,在小样本情况下如何抽取F isher最优鉴别特征一直是许多研究者关心的问题。本文应用投影变换和同构变换的原理,从理论上解决了小样本情况下最优鉴别矢量的求解问题,即最... 线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。近几年,在小样本情况下如何抽取F isher最优鉴别特征一直是许多研究者关心的问题。本文应用投影变换和同构变换的原理,从理论上解决了小样本情况下最优鉴别矢量的求解问题,即最优鉴别矢量可在一个低维空间里求得;给出了特征抽取模型,并给出求解模型的PPCA+LDA算法;在ORL人脸库3种分辨率灰度图像上进行实验。实验结果表明,PPCA+LDA算法抽取的鉴别向量有较强的特征抽取能力,在普通的最小距离分类器下能达到较高的正确识别率,而且识别结果十分稳定。 展开更多
关键词 小样本问题 主成分分析 线性鉴别分析 压缩变换 人脸识别
下载PDF
一种基于预分类的高效最近邻分类器算法 被引量:8
7
作者 王卫东 郑宇杰 +1 位作者 杨静宇 杨健 《计算机科学》 CSCD 北大核心 2007年第2期198-200,共3页
本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸... 本文的最近邻分类器算法是采用多分类器组合的方式对测试样本进行预分类,并根据预分类结果重新生成新的训练和测试样本集。对新的测试样本采用最近邻分类器进行分类识别,并将识别结果与预分类结果结合在一起进行正确率测试。在ORL人脸库上的实验结果说明,该算法对小样本数据的识别具有明显优势。 展开更多
关键词 最近邻分类器 预类别 多分类器组合 小样本问题 人脸识别
下载PDF
利用标准化LDA进行人脸识别 被引量:22
8
作者 余冰 金连甫 陈平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第3期302-306,共5页
线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变... 线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变权函数 ,使得在选择投影方向时 ,能够更好地分开各个类的样本 ;同时 ,它采用一种合理而有效的方法解决矩阵奇异的问题 ,即保留样本类内离散度矩阵的零空间 ,因为这个空间包含了最具有判别能力的信息 在这个零空间里 ,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵 实验结果显示 ,在人脸识别中 ,与传统LDA方法相比 ,该方法有更好的识别率 展开更多
关键词 线性判别分析(LDA) 样本类间离散度 样本类内离散度 小样本集合问题 边缘类
下载PDF
基于矩阵指数变换的边界Fisher分析 被引量:7
9
作者 何进荣 丁立新 +1 位作者 崔梦天 胡庆辉 《计算机学报》 EI CSCD 北大核心 2014年第10期2196-2205,共10页
边界Fisher分析是一种经典的有监督线性降维方法,被广泛用于高维数据的模式分类.由于边界Fisher分析算法中涉及到矩阵求逆的运算,在数值计算中会产生矩阵的奇异性问题,尤其当样本的个数小于样本的维数时,导致所谓的"小样本问题&quo... 边界Fisher分析是一种经典的有监督线性降维方法,被广泛用于高维数据的模式分类.由于边界Fisher分析算法中涉及到矩阵求逆的运算,在数值计算中会产生矩阵的奇异性问题,尤其当样本的个数小于样本的维数时,导致所谓的"小样本问题".采用主成分分析方法对样本数据进行预处理可以克服奇异性问题,然而可能会损失样本的某些判别信息.针对此不足之处,根据矩阵指数的非奇异性,对边界Fisher分析中的散度矩阵进行矩阵指数变换,从而克服了矩阵求逆中的奇异性问题.理论分析表明,该方法等价于零空间上的边界Fisher分析,有效利用了类内散度矩阵的零空间上的信息,因此其判别能力得到了增强.数据可视化和人脸识别实验表明,该方法可以有效挖掘样本中潜在的判别特性,提高分类性能. 展开更多
关键词 边界Fisher分析 小样本问题 矩阵指数 人脸识别 数据挖掘
下载PDF
Fisher线性鉴别分析的理论研究及其应用 被引量:97
10
作者 杨健 杨静宇 叶晖 《自动化学报》 EI CSCD 北大核心 2003年第4期481-493,共13页
Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最... Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题 ,而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行 ,这与传统方法相比极大地降低了计算量 .在此理论基础上 ,进一步为高维、小样本情况下的最优鉴别分析方法建立了一个通用的算法框架 ,即先作K L变换 ,再用Fisher鉴别变换作二次特征抽取 .基于该算法框架 ,提出了组合线性鉴别法 ,该方法综合利用了F S鉴别和J Y鉴别的优点 ,同时消除了二者的弱点 .在ORL标准人脸库上的试验表明 ,组合鉴别法所抽取的特征在普通的最小距离分类器和最近邻分类器下均达到 97%的正确识别率 ,而且识别结果十分稳定 . 展开更多
关键词 FISHER鉴别准则 线性鉴别分析 FoleySammon线性鉴别分析 组合线性鉴别分析 高维小样本问题 人脸识别
下载PDF
利用Gabor小波变换解决人脸识别中的小样本问题 被引量:20
11
作者 聂祥飞 郭军 《光学精密工程》 EI CAS CSCD 北大核心 2007年第6期973-977,共5页
提出了一种在人脸识别中解决小样本问题的新算法。通过把人脸图像经过Gabor小波变换后得到的每个图像都看成是独立的样本,大大增加了每一类人脸样本的样本数,解决了人脸识别中的小样本问题。专门针对人脸特征向量组,设计了使用白化变换... 提出了一种在人脸识别中解决小样本问题的新算法。通过把人脸图像经过Gabor小波变换后得到的每个图像都看成是独立的样本,大大增加了每一类人脸样本的样本数,解决了人脸识别中的小样本问题。专门针对人脸特征向量组,设计了使用白化变换后余弦距离测度的最近邻分类器来进行分类判决。在FERET人脸库中,对该方法与直接PCA方法进行了实验比较,结果表明,新方法的平均正确识别率可以达到97%,比直接PCA方法具有更好的识别性能。 展开更多
关键词 人脸识别 GABOR小波变换 小样本问题
下载PDF
采用虚拟训练样本的二次判别分析方法 被引量:16
12
作者 王卫东 杨静宇 《自动化学报》 EI CSCD 北大核心 2008年第4期400-407,共8页
小样本问题会造成各类协方差矩阵的奇异性和不稳定性.本文采用对训练样本进行扰动的方法来生成虚拟训练样本,利用这些虚拟训练样奉克服了各类协方差矩阵的奇异性问题,从而可以直接使用二次判别分析(Quadratic discriminant analysis,QDA... 小样本问题会造成各类协方差矩阵的奇异性和不稳定性.本文采用对训练样本进行扰动的方法来生成虚拟训练样本,利用这些虚拟训练样奉克服了各类协方差矩阵的奇异性问题,从而可以直接使用二次判别分析(Quadratic discriminant analysis,QDA)方法.本文方法克服了正则化判别分析(Regularized discriminant analysis,RDA)需要进行参数优化的问题.实验结果表明,QDA的模式识别率优于参数最优化时RDA算法的识别率. 展开更多
关键词 小样本问题 二次判别分析 虚拟训练样本 扰动方法 分类器 人脸识别
下载PDF
基于最大散度差判别分析的一种目标识别方法 被引量:2
13
作者 张善文 李萍 +1 位作者 井荣枝 张云龙 《系统仿真学报》 CAS CSCD 北大核心 2013年第3期441-444,共4页
针对线性判别分析(LDA)在多类高维小样本模式的分类中存在的"小样本问题"和"次优性问题",提出了一种基于最大散度差判别准则的监督维数约简方法。首先,构造类内和类间离散度函数;然后采用最大散度差判别准则设计最... 针对线性判别分析(LDA)在多类高维小样本模式的分类中存在的"小样本问题"和"次优性问题",提出了一种基于最大散度差判别准则的监督维数约简方法。首先,构造类内和类间离散度函数;然后采用最大散度差判别准则设计最佳判别目标函数,得到映射矩阵和提取分类特征。该方法省略了求解逆矩阵过程,从而避免了传统的LDA存在的小样本问题;最后,在真实飞机图像数据库上的识别实验结果验证了该算法的有效性。 展开更多
关键词 飞机目标识别 线性判别分析 最大散度差判别分析 小样本问题
下载PDF
一种适用于小样本问题的基于边界的特征提取算法 被引量:6
14
作者 黄睿 何明一 杨少军 《计算机学报》 EI CSCD 北大核心 2007年第7期1173-1178,共6页
特征提取技术是模式识别领域进行数据降维和强化判别信息的有效方法.线性判别分析是监督特征提取方法的典型代表,获得广泛应用,但受到小样本问题的制约.对此提出一种适用于小样本问题的基于边界的特征提取算法.算法利用高维数据小样... 特征提取技术是模式识别领域进行数据降维和强化判别信息的有效方法.线性判别分析是监督特征提取方法的典型代表,获得广泛应用,但受到小样本问题的制约.对此提出一种适用于小样本问题的基于边界的特征提取算法.算法利用高维数据小样本情况下线性可分概率增加以及其低维投影趋于正态分布的特点,定义了新的类别边界,不但考虑了由线性判别分析提出的类内、类间离散度,也兼顾各类别的方差差异性.通过极大化该边界获得最优投影向量,同时避免因类内离散度矩阵奇异导致的小样本问题.进一步将算法推广到多类问题.高光谱数据特征提取与分类实验表明,算法在小样本情况下对于两类和多类问题均具有良好的推广性能,优于多种线性判别分析的改进算法,并且在样本较多时也取得了满意结果. 展开更多
关键词 特征提取 线性判别分析 小样本问题 模式分类 最大化类别边界
下载PDF
一种基于KCCA的小样本脸像鉴别方法 被引量:8
15
作者 贺云辉 赵力 邹采荣 《应用科学学报》 CAS CSCD 北大核心 2006年第2期140-144,共5页
基于典型相关分析和Fisher线性鉴别分析的等价性,提出了利用核典型相关分析来抽取小样本人脸图像的非线性鉴别特征,并用其进行脸像鉴别.这样得到的非线性特征本质上等价于核Fisher非线性最佳鉴别特征.基于ORL库的实验表明,对小样本人脸... 基于典型相关分析和Fisher线性鉴别分析的等价性,提出了利用核典型相关分析来抽取小样本人脸图像的非线性鉴别特征,并用其进行脸像鉴别.这样得到的非线性特征本质上等价于核Fisher非线性最佳鉴别特征.基于ORL库的实验表明,对小样本人脸图像,KCCA可以得到和广义鉴别分析近似的识别性能,其所得非线性特征明显优于FLDA的线性鉴别特征. 展开更多
关键词 典型相关分析 核方法 FISHER鉴别分析 小样本问题 脸像鉴别
下载PDF
镜像基函数下过渡投影子空间人脸特征抽取算法 被引量:3
16
作者 范燕 於东军 +1 位作者 宋晓宁 束鑫 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第6期915-918,共4页
为强化鉴别信息的完整性,提升解决小样本问题(SSSP)的能力,该文构造了一种求解具有几何对称性的样本鉴别信息的特征抽取算法。从线性子空间的角度出发,利用人脸的几何对称性,依据奇偶分解原理,在原特征空间生成一组镜像对称基函数。构... 为强化鉴别信息的完整性,提升解决小样本问题(SSSP)的能力,该文构造了一种求解具有几何对称性的样本鉴别信息的特征抽取算法。从线性子空间的角度出发,利用人脸的几何对称性,依据奇偶分解原理,在原特征空间生成一组镜像对称基函数。构造一种矩阵变换,求出两个对称基之间的过渡矩阵,并在过渡矩阵空间上求取最优鉴别矢量集。该方法强化了鉴别信息的完整性,对解决SSSP是有效的。在ORL和FERET人脸数据库上的实验结果验证了算法的有效性。 展开更多
关键词 镜像基函数 过渡矩阵 人脸识别 小样本问题
下载PDF
基于行列特征复融合的人脸识别 被引量:4
17
作者 胡晓 俞王新 +1 位作者 余群 姚菁 《计算机工程》 CAS CSCD 北大核心 2010年第11期176-177,182,共3页
针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T... 针对基于行列投影特征融合的二维线性判别分析中存在的问题,提出一种行列特征复融合的人脸识别算法。通过二维线性判别分析获得行和列的特征矩阵融合成一个复特征矩阵,从复特征矩阵重提取最具分类能力的系数组成特征向量。利用AT&T和AR人脸数据库对该算法进行性能测试,结果表明该算法具有较高的识别率。 展开更多
关键词 人脸识别 二维线性判别分析 小样本容量问题 特征融合
下载PDF
基于对称线性判别分析算法的人脸识别 被引量:4
18
作者 王伟 张明 《计算机应用》 CSCD 北大核心 2009年第12期3352-3353,3356,共3页
小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在... 小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在ORL和Yale标准人脸库上的实验结果表明,人脸识别效果优于传统LDA方法、独立成分分析(ICA)方法以及二维对称主成分分析(2DSPCA)方法。 展开更多
关键词 线性判别分析 小样本问题 镜像图像 零空间 类间离散度 类内离散度
下载PDF
基于两空间线性鉴别分析的小样本人脸识别 被引量:3
19
作者 赵明华 李鹏 刘直芳 《光电工程》 EI CAS CSCD 北大核心 2008年第9期127-132,共6页
指出了线性鉴别分析及其几种改进方法在处理小样本人脸识别问题时存在的不足,提出了一种基于两空间线性鉴别分析的小样本人脸识别方法。首先将样本投影到总体散布矩阵的非零空间中进行分析;进而将类内散布矩阵分成零空间和非零空间进行... 指出了线性鉴别分析及其几种改进方法在处理小样本人脸识别问题时存在的不足,提出了一种基于两空间线性鉴别分析的小样本人脸识别方法。首先将样本投影到总体散布矩阵的非零空间中进行分析;进而将类内散布矩阵分成零空间和非零空间进行鉴别向量确定和鉴别特征提取,最后将得到的两种鉴别特征融合,从而使用最近邻法进行分类。实验结果表明,在进行小样本的人脸识别时,该方法的识别效果优于其他线性方法。 展开更多
关键词 人脸识别 特征提取 线性鉴别分析 小样本问题 散布矩阵
下载PDF
基于图像分块的LDA人脸识别 被引量:6
20
作者 王文豪 严云洋 《计算机工程与设计》 CSCD 北大核心 2007年第12期2889-2891,共3页
设计了一种基于图像分块的LDA(linear discriminant analysis)人脸识别方法,该方法从模式的原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行LDA特征提取,从而得到能代替原始模式的低维新模式,最后再用最小距离分类器进行... 设计了一种基于图像分块的LDA(linear discriminant analysis)人脸识别方法,该方法从模式的原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行LDA特征提取,从而得到能代替原始模式的低维新模式,最后再用最小距离分类器进行分类。该方法克服了传统LDA方法的缺点,其优点是能有效地提取图像的局部特征。实验表明:该方法在识别性能上优于Fisherfaces方法。 展开更多
关键词 人脸识别 图像分块 线性鉴别分析 小样本问题 最小距离分类器
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部