1A6/DRIM has been identified as UTP20, a small subunit processome component, functioning in 18S rRNA processing. In the present study, the maturation of 28S rRNA and 5.8S rRNA was inhibited when 1A6/DRIM was silenced ...1A6/DRIM has been identified as UTP20, a small subunit processome component, functioning in 18S rRNA processing. In the present study, the maturation of 28S rRNA and 5.8S rRNA was inhibited when 1A6/DRIM was silenced in HeLa cells; and coincidently, an accumulation of 32S rRNA precursor was observed. Immunoprecipitation was performed with the anti-1A6/DRIM antibody, followed by Northern blot with the ITS2 probe. The results showed that 1A6/DRIM was associated with both 32S and 12S rRNA precursors in vivo. The expression profile of 1A6/DRIM during rRNA processing was investigated by sucrose density gradient fractionation in combination with Western blot analysis. The results demonstrated that 1A6/DRIM was involved in the pre-60S particles in addition to the pre-40S particles and co-sediment with the 32S and 12S rRNA precursors in the nucleolus. Furthermore, the interaction of U8 snoRNA with 1A6/DRIM was revealed by immunoprecipitation. These results demonstrated that 1A6/DRIM interacted with both 32S rRNA and U8 snoRNA, being involved in 28S rRNA and 5.8S rRNA processing.展开更多
Molecular identification methods,in particular high-throughput sequencing tools,have greatly improved our knowledge about fungal diversity and biogeography,but many of the recovered taxa from natural environments cann...Molecular identification methods,in particular high-throughput sequencing tools,have greatly improved our knowledge about fungal diversity and biogeography,but many of the recovered taxa from natural environments cannot be identified to species or even higher taxonomic levels.This study addresses the phylogenetic placement of previously unrecognized fungal groups by using two complementary approaches:(i)third-generation amplicon sequencing analysis of DNA from global soil samples,screening out ITS reads of<90%similarity to other available Sanger sequences,and(ii)analysis of common fungal taxa that were previously indicated to be enigmatic in terms of taxonomic placement based on the ITS sequences alone(so-called top50 sequences).For the global soil samples,we chose to amplify the full rRNA gene operon using four partly overlapping amplicons and multiple newly developed primers or primer combinations that cover nearly all fungi and a vast majority of non-fungal eukaryotes.We extracted the rRNA 18S(SSU)and 28S(LSU)genes and performed phylogenetic analyses against carefully selected reference material.Both SSU and LSU analyses placed most soil sequences and top50 sequences to known orders and classes,but tens of monophyletic groups and single sequences remained outside described taxa.Furthermore,the LSU analyses recovered a few small groups of sequences that may potentially represent novel phyla.We conclude that rRNA genes-based phylogenetic analyses are efficient tools for determining phylogenetic relationships of fungal taxa that cannot be placed to any order or class using ITS sequences alone.However,in many instances,longer rRNA gene sequences and availability of both SSU and LSU reads are needed to improve taxonomic resolution.By leveraging third-generation sequencing from global soil samples,we successfully provided phylogenetic placement for many previously unidentified sequences and broadened our view on the fungal tree of life,with 10-20%new order-level taxa.In addition,the PacBio sequence data greatly extends fungal class-level information in reference databases.展开更多
基金supported by the National High-Tech Research and Development Program of China (2006AA02A402 and 2008AA02Z131)the National Natural Science Foundation of China (30771224)+1 种基金the Ministry of Education 985 project of China (985-2-016-24)National Key Basic Research Program of China (2006CB943603)
文摘1A6/DRIM has been identified as UTP20, a small subunit processome component, functioning in 18S rRNA processing. In the present study, the maturation of 28S rRNA and 5.8S rRNA was inhibited when 1A6/DRIM was silenced in HeLa cells; and coincidently, an accumulation of 32S rRNA precursor was observed. Immunoprecipitation was performed with the anti-1A6/DRIM antibody, followed by Northern blot with the ITS2 probe. The results showed that 1A6/DRIM was associated with both 32S and 12S rRNA precursors in vivo. The expression profile of 1A6/DRIM during rRNA processing was investigated by sucrose density gradient fractionation in combination with Western blot analysis. The results demonstrated that 1A6/DRIM was involved in the pre-60S particles in addition to the pre-40S particles and co-sediment with the 32S and 12S rRNA precursors in the nucleolus. Furthermore, the interaction of U8 snoRNA with 1A6/DRIM was revealed by immunoprecipitation. These results demonstrated that 1A6/DRIM interacted with both 32S rRNA and U8 snoRNA, being involved in 28S rRNA and 5.8S rRNA processing.
基金funded by the Estonian Science Foundation(Grants PUT1399,PRG632,MOBERC21)。
文摘Molecular identification methods,in particular high-throughput sequencing tools,have greatly improved our knowledge about fungal diversity and biogeography,but many of the recovered taxa from natural environments cannot be identified to species or even higher taxonomic levels.This study addresses the phylogenetic placement of previously unrecognized fungal groups by using two complementary approaches:(i)third-generation amplicon sequencing analysis of DNA from global soil samples,screening out ITS reads of<90%similarity to other available Sanger sequences,and(ii)analysis of common fungal taxa that were previously indicated to be enigmatic in terms of taxonomic placement based on the ITS sequences alone(so-called top50 sequences).For the global soil samples,we chose to amplify the full rRNA gene operon using four partly overlapping amplicons and multiple newly developed primers or primer combinations that cover nearly all fungi and a vast majority of non-fungal eukaryotes.We extracted the rRNA 18S(SSU)and 28S(LSU)genes and performed phylogenetic analyses against carefully selected reference material.Both SSU and LSU analyses placed most soil sequences and top50 sequences to known orders and classes,but tens of monophyletic groups and single sequences remained outside described taxa.Furthermore,the LSU analyses recovered a few small groups of sequences that may potentially represent novel phyla.We conclude that rRNA genes-based phylogenetic analyses are efficient tools for determining phylogenetic relationships of fungal taxa that cannot be placed to any order or class using ITS sequences alone.However,in many instances,longer rRNA gene sequences and availability of both SSU and LSU reads are needed to improve taxonomic resolution.By leveraging third-generation sequencing from global soil samples,we successfully provided phylogenetic placement for many previously unidentified sequences and broadened our view on the fungal tree of life,with 10-20%new order-level taxa.In addition,the PacBio sequence data greatly extends fungal class-level information in reference databases.