In this paper,the explicit state-space model for a multi-inverter system including grid-following inverter-based generators(IBGs)and grid-forming IBGs is developed by the two-level component connection method(CCM),whi...In this paper,the explicit state-space model for a multi-inverter system including grid-following inverter-based generators(IBGs)and grid-forming IBGs is developed by the two-level component connection method(CCM),which modularized inverter control blocks at the primary level and IBGs at the secondary level.Based on the comprehensive state-space model representing full order of system dynamics,eigenvalues of the overall system are thoroughly analyzed,identifying potential adverse impacts of not only grid-following inverters,but also grid forming inverters on the system small-signal stability,with the underlying principle of oscillations also understood.Numerical and simulation results validate effectiveness of the proposed methodology on IEEE benchmarking 39-bus system.展开更多
This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm ...This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.展开更多
An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is pr...An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is proposed for extraction of accessresistance and parasiticinductance. This method differs from previous ones by extracting the c-quivalent circuit parameterswithout using special test structure or global numerical optimization techniques. The mainadvantage of this method is that a unique and physically meaningful set of intrinsic parameters isextracted from impedance and admittance representation of the measured S-pa-rameters in thefrequency range of 1-12 GHz under different bias conditions. The method yields a deviation of lessthan 5% between measured and modeled S-parameters.展开更多
A novel and accurate method is proposed to extract the intrinsic elements of the GaN high-electron-mobility transistor(HEMT) switch.The new extraction method is verified by comparing the simulated S-parameters with ...A novel and accurate method is proposed to extract the intrinsic elements of the GaN high-electron-mobility transistor(HEMT) switch.The new extraction method is verified by comparing the simulated S-parameters with the measured data over the 5-40 GHz frequency range.The percentage errors E(ij) within 3.83% show the great agreement between the simulated S-parameters and the measured data.展开更多
An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circui...An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.展开更多
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance i...A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.展开更多
90-nm T-shaped gate InP-based In_(0.52)Al_(0.48)As/In_(0.6)Ga_(0.4)As pseudomorphic high electron mobility transistors were designed and fabricated with a gate-width of 2×30 μm,a source-drain space of 2...90-nm T-shaped gate InP-based In_(0.52)Al_(0.48)As/In_(0.6)Ga_(0.4)As pseudomorphic high electron mobility transistors were designed and fabricated with a gate-width of 2×30 μm,a source-drain space of 2.5 μm,and a source-gate space of 0.75 μm.DC,RF and small-signal model characterizations were demonstrated.The maximum saturation current density was measured to be 755 mA/mm biased at V_(gs)=0.6 V and V_(ds)=1.5 V.The maximum extrinsic transconductance was measured to be 1006 mS/mm biased at V_(ds)=—0.1V and V_(ds)=1.5 V.The extrapolated current gain cutoff frequency and maximum oscillation frequency based on S-parameters measured from 0.5 to 110 GHz were 180 and 264 GHz,respectively.The inflection point(the stability factor k=1)where the slope from-10 dB/decade(MSG) to-20 dB/decade(MAG) was measured to be 83 GHz.The smallsignal model of this device was also established,and the S-parameters of the model are consistent with those measured from 0.5-110 GHz.展开更多
A new small-signal model for anisomerous AlGaN/GaN high electron mobility transistors(HEMTs) is proposed for accurate prediction of HEMT behavior up to 20 GHz.The parasitic elements are extracted from both cold-FET ...A new small-signal model for anisomerous AlGaN/GaN high electron mobility transistors(HEMTs) is proposed for accurate prediction of HEMT behavior up to 20 GHz.The parasitic elements are extracted from both cold-FET and pinch-off bias to obtain more precise results and the intrinsic part is directly extracted.All the parameters needed in this process are determined by the device structure rather than optimization methods.This guarantees consistency between the parameter values and the component's physical meaning.展开更多
The accurate extraction of AlGaN/GaN HEMT small-signal models, which is an important step in largesignal modeling, can exactly reflect the microwave performance of the physical structure of the device. A new method of...The accurate extraction of AlGaN/GaN HEMT small-signal models, which is an important step in largesignal modeling, can exactly reflect the microwave performance of the physical structure of the device. A new method of extracting the parasitic elements is presented, and an open dummy structure is introduced to obtain the parasitic capacitances. With a Schottky resistor in the gate, a new method is developed to extract Rg. In order to characterize the changes of the depletion region under various drain voltages, the drain delay factor is involved in the output conductance of the device. Compared to the traditional method, the fitting of S 11 and S 22 is improved, and fT and fmax can be better predicted. The validity of the proposed method is verified with excellent correlation between the measured and simulated S-parameters in the range of 0.1 to 26.1 GHz.展开更多
Emerging technologies such as electric vehicles,solid-state transformers,and DC transformers are implemented using the closed-loop bi-directional dual-active-bridge(DAB)converter.In this context,it is necessary to hav...Emerging technologies such as electric vehicles,solid-state transformers,and DC transformers are implemented using the closed-loop bi-directional dual-active-bridge(DAB)converter.In this context,it is necessary to have average models that provide an efficient way of tuning the proportional integral(PI)compensator parameters for large-and small-signal applications.We present a novel small-signal model(SSM)for DAB converter with a single closed-loop PI controller and the total elimination of reactive current(IQ=0).The method applies a modulation technique for IQ=0 and introduces a composite function in the controller while reducing the original nonlinear switching model,which allows to decrease the order of the transfer function and analyze the closed-loop operation.The proposed SSM is analyzed using different response time,load,and DC voltage changes.The simulation and experimental results demonstrate the ease of implementation and effectiveness of the proposed model with respect to other SSM techniques.展开更多
An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with dist...An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, the...In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.展开更多
基金supported partially by a MOE Tier 1 Thematic grant(23070749).
文摘In this paper,the explicit state-space model for a multi-inverter system including grid-following inverter-based generators(IBGs)and grid-forming IBGs is developed by the two-level component connection method(CCM),which modularized inverter control blocks at the primary level and IBGs at the secondary level.Based on the comprehensive state-space model representing full order of system dynamics,eigenvalues of the overall system are thoroughly analyzed,identifying potential adverse impacts of not only grid-following inverters,but also grid forming inverters on the system small-signal stability,with the underlying principle of oscillations also understood.Numerical and simulation results validate effectiveness of the proposed methodology on IEEE benchmarking 39-bus system.
文摘This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.
基金Supported by the National Natural Science Foun dation of China(60444004) and the AM Foundation of Shanghai Mu nicipal Science and Technology Commission of China (0109)
文摘An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is proposed for extraction of accessresistance and parasiticinductance. This method differs from previous ones by extracting the c-quivalent circuit parameterswithout using special test structure or global numerical optimization techniques. The mainadvantage of this method is that a unique and physically meaningful set of intrinsic parameters isextracted from impedance and admittance representation of the measured S-pa-rameters in thefrequency range of 1-12 GHz under different bias conditions. The method yields a deviation of lessthan 5% between measured and modeled S-parameters.
文摘A novel and accurate method is proposed to extract the intrinsic elements of the GaN high-electron-mobility transistor(HEMT) switch.The new extraction method is verified by comparing the simulated S-parameters with the measured data over the 5-40 GHz frequency range.The percentage errors E(ij) within 3.83% show the great agreement between the simulated S-parameters and the measured data.
文摘An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
文摘A small-signal equivalent circuit model and the ted. The equivalent lumped circuit, which takes the main extraction techniques for photodetector chips are presen- factors that limit a photodetector's RF performance into consideration,is first determined based on the device's physical structure. The photodetector's S parameters are then on-wafer measured, and the measured raw data are processed with further calibration. A genetic algorithm is used to fit the measured data, thereby allowing us to calculate each parameter value of the model. Experimental resuits show that the modeled parameters are well matched to the measurements in a frequency range from 130MHz to 20GHz, and the proposed method is proved feasible. This model can give an exact description of the photodetector chip's high frequency performance,which enables an effective circuit-level prediction for photodetector and optoelectronic integrated circuits.
基金Project supported by the National Natural Science Foundation of China(No.61275107)
文摘90-nm T-shaped gate InP-based In_(0.52)Al_(0.48)As/In_(0.6)Ga_(0.4)As pseudomorphic high electron mobility transistors were designed and fabricated with a gate-width of 2×30 μm,a source-drain space of 2.5 μm,and a source-gate space of 0.75 μm.DC,RF and small-signal model characterizations were demonstrated.The maximum saturation current density was measured to be 755 mA/mm biased at V_(gs)=0.6 V and V_(ds)=1.5 V.The maximum extrinsic transconductance was measured to be 1006 mS/mm biased at V_(ds)=—0.1V and V_(ds)=1.5 V.The extrapolated current gain cutoff frequency and maximum oscillation frequency based on S-parameters measured from 0.5 to 110 GHz were 180 and 264 GHz,respectively.The inflection point(the stability factor k=1)where the slope from-10 dB/decade(MSG) to-20 dB/decade(MAG) was measured to be 83 GHz.The smallsignal model of this device was also established,and the S-parameters of the model are consistent with those measured from 0.5-110 GHz.
文摘A new small-signal model for anisomerous AlGaN/GaN high electron mobility transistors(HEMTs) is proposed for accurate prediction of HEMT behavior up to 20 GHz.The parasitic elements are extracted from both cold-FET and pinch-off bias to obtain more precise results and the intrinsic part is directly extracted.All the parameters needed in this process are determined by the device structure rather than optimization methods.This guarantees consistency between the parameter values and the component's physical meaning.
基金supported by the National Basic Research Program of China(No.2002CB311903)the Key Program of the Chinese Academy of Sciences(No.KGCX2-SW-107)
文摘The accurate extraction of AlGaN/GaN HEMT small-signal models, which is an important step in largesignal modeling, can exactly reflect the microwave performance of the physical structure of the device. A new method of extracting the parasitic elements is presented, and an open dummy structure is introduced to obtain the parasitic capacitances. With a Schottky resistor in the gate, a new method is developed to extract Rg. In order to characterize the changes of the depletion region under various drain voltages, the drain delay factor is involved in the output conductance of the device. Compared to the traditional method, the fitting of S 11 and S 22 is improved, and fT and fmax can be better predicted. The validity of the proposed method is verified with excellent correlation between the measured and simulated S-parameters in the range of 0.1 to 26.1 GHz.
基金supported in part by the Support Program for Research Projects and Technological Innovation PAPIIT-UNAM(No.DGAPA-PAPIITTA100718)。
文摘Emerging technologies such as electric vehicles,solid-state transformers,and DC transformers are implemented using the closed-loop bi-directional dual-active-bridge(DAB)converter.In this context,it is necessary to have average models that provide an efficient way of tuning the proportional integral(PI)compensator parameters for large-and small-signal applications.We present a novel small-signal model(SSM)for DAB converter with a single closed-loop PI controller and the total elimination of reactive current(IQ=0).The method applies a modulation technique for IQ=0 and introduces a composite function in the controller while reducing the original nonlinear switching model,which allows to decrease the order of the transfer function and analyze the closed-loop operation.The proposed SSM is analyzed using different response time,load,and DC voltage changes.The simulation and experimental results demonstrate the ease of implementation and effectiveness of the proposed model with respect to other SSM techniques.
基金supported by the National Natural Science Foundation of China (Grant No. 61934006)。
文摘An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金supported partially by the Important National Science&Technology Specific Projects,China(Grant No.2013ZX02503003)
文摘In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature for- mulas for corresponding model parameters. The proposed method is validated by a 1x 0.2 x 16 μm2 SiGe HBT over a wide temperature range (from 218 K to 473 K), and good matching is obtained between the extracted and modeled resuits. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.