期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Adjacent vertex-distinguishing total colorings of K_s∨K_t
1
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
2
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
3
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
4
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
5
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
6
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
7
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER total COLORING vertex-distinguishing total COLORING vertex-distinguishing total chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
8
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
9
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
路图的Smarandachely全染色算法 被引量:4
10
作者 李敬文 张欣 +1 位作者 王治文 宗传霞 《计算机应用研究》 CSCD 北大核心 2011年第3期848-850,共3页
设f是简单图G的一个正常的k-全染色,若G中任意两点的点及其关联边的颜色构成的集合互不包含,则称f为G的k-Smarandachely全染色,这样k中最小者称为G的Smarandachely全色数。针对路图的Smaran-dachely全染色问题,提出了一种新算法。该算... 设f是简单图G的一个正常的k-全染色,若G中任意两点的点及其关联边的颜色构成的集合互不包含,则称f为G的k-Smarandachely全染色,这样k中最小者称为G的Smarandachely全色数。针对路图的Smaran-dachely全染色问题,提出了一种新算法。该算法采用三元组编码方式将问题进行转换,按照给定规则生成三元组队列,并对该队列内部排序进行变换调整。同时,给出两个判断函数,根据函数的值判断是否得到问题的解。实验结果表明,该算法可以有效地解决路图的Smarandachely全染色问题。 展开更多
关键词 k-smarandachely全染色 smarandachely全色数 编码 三元组队列 判断函数
下载PDF
若干类3-正则图的Smarandachely邻点全染色的界 被引量:3
11
作者 李沐春 王立丽 +1 位作者 张伟东 凌昭昭 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期79-84,共6页
针对3-正则图的结构性质,利用组合分析法和构造染色的方法讨论了若干类3-正则图的Smarandachely邻点全染色,并得到了其Smarandachely邻点全色数,进一步验证了图的Smarandachely邻点全染色猜想.
关键词 3-正则图 smarandachely邻点全染色 smarandachely邻点全色数
下载PDF
路的Smarandachely点可区别全染色 被引量:2
12
作者 包世堂 王治文 +1 位作者 钟约夫 李敬文 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期126-129,共4页
利用对角线排序法给出了计算机算法,并证明了路图满足Smarandachely点可区别全染色猜想:设G是简单图,则χst(G)≤tμ(G)+1,其中tμ为组合全度.
关键词 smarandachely点可区别全染色 smarandachely点可区别全色数 对角线排序
下载PDF
K_3∨K_n的Smarandachely邻点可区别正常边染色 被引量:3
13
作者 刘顺琴 陈祥恩 《兰州理工大学学报》 CAS 北大核心 2011年第1期139-145,共7页
图的染色问题是图论研究的主要内容之一,起源于著名的"四色猜想"问题.图G的一个正常边染色f称为是Smarandachely邻点可区别的,如果对G中任何相邻的两个顶点u与v,与u关联的边的颜色的集合和与v关联的边的颜色构成的集合互不包... 图的染色问题是图论研究的主要内容之一,起源于著名的"四色猜想"问题.图G的一个正常边染色f称为是Smarandachely邻点可区别的,如果对G中任何相邻的两个顶点u与v,与u关联的边的颜色的集合和与v关联的边的颜色构成的集合互不包含.对一个图G进行Smarandachely邻点可区别正常边染色所用的最少颜色数称为G的Smarandachely邻点可区别正常边色数,简称为G的SA-边色数,记为χ′sa(G).讨论K3∨Kn的SA-边色数,得到相应的结果. 展开更多
关键词 完全图 smarandachely邻点可区别正常边染色 smarandachely邻点可区别正常边色数
下载PDF
广义拟Thomassen图的Smarandachely邻点全色数 被引量:1
14
作者 时亭亭 强会英 文飞 《兰州交通大学学报》 CAS 2010年第4期147-149,共3页
简单图G(V,E)的Smarandachely邻点全染色是G的正常全染色,满足对图G(V,E)的任意两个相邻点u和v有|C(u)\C(V)|≥1且|C(v)\C(u)|≥1,其所用最小色数称为图G的Smarandachely邻点全色数,其中:C(u)={f(u)}∪{f(uv)|uv∈E(G)}.给出了广义拟Tho... 简单图G(V,E)的Smarandachely邻点全染色是G的正常全染色,满足对图G(V,E)的任意两个相邻点u和v有|C(u)\C(V)|≥1且|C(v)\C(u)|≥1,其所用最小色数称为图G的Smarandachely邻点全色数,其中:C(u)={f(u)}∪{f(uv)|uv∈E(G)}.给出了广义拟Thomassen图的Smarandachely邻点全色数. 展开更多
关键词 三正则图 广义拟Thomassen图 smarandachely邻点全染色 smarandachely邻点全色数
下载PDF
K_m∨K_n的Smarandachely邻点可区别正常边染色 被引量:1
15
作者 刘顺琴 陈祥恩 《兰州理工大学学报》 CAS 北大核心 2015年第4期155-158,共4页
研究图K-m∨Kn的Smarandachely邻点可区别正常边染色,讨论K-m∨Kn的SA边色数,得到正整数n≥4且n为偶数时χ′sa(K-n-2∨Kn)=2n-1和χ′sa(K-n-1∨Kn)=2n-1;正整数n≥3且n为奇数,则χ′sa(K-n-1∨Kn)=2n;对正整数n≥2,有χ′sa(K-2∨Kn)=... 研究图K-m∨Kn的Smarandachely邻点可区别正常边染色,讨论K-m∨Kn的SA边色数,得到正整数n≥4且n为偶数时χ′sa(K-n-2∨Kn)=2n-1和χ′sa(K-n-1∨Kn)=2n-1;正整数n≥3且n为奇数,则χ′sa(K-n-1∨Kn)=2n;对正整数n≥2,有χ′sa(K-2∨Kn)=n+3. 展开更多
关键词 完全图 smarandachely邻点可区别正常边染色 smarandachely邻点可区别正常边色数
下载PDF
k-方体图的Smarandachely邻点全染色 被引量:1
16
作者 梁少卫 《唐山学院学报》 2009年第3期6-7,共2页
研究了k-方体图Qk(V,E)的Smarandachely邻点全染色,证明了关于图的Smarandachely邻点全染色猜想于k-方体图成立,r-正则图G(V,E)的Smarandachely邻点全色数sχat(G)=Δ(G)+2,其中sχat(G)表示G(V,E)的Smarandachely邻点全色数。
关键词 k-方体图 smarandachely邻点全染色 smarandachely邻点全色数
下载PDF
图P_n^2的Smarandachely邻点可区别Ⅰ-全染色
17
作者 李永艳 《伊犁师范学院学报(自然科学版)》 2018年第3期1-4,共4页
通过对二幂图P_n^2的Smarandachely邻点可区别Ⅰ-全染色问题的研究,进一步验证了图的Smarandachely邻点可区别Ⅰ-全染色的猜想.应用构造具体染色的方法和色调整技术,给出了图P_n^2的Smarandachely邻点可区别Ⅰ-全染色,得到了图P_n^2的Sm... 通过对二幂图P_n^2的Smarandachely邻点可区别Ⅰ-全染色问题的研究,进一步验证了图的Smarandachely邻点可区别Ⅰ-全染色的猜想.应用构造具体染色的方法和色调整技术,给出了图P_n^2的Smarandachely邻点可区别Ⅰ-全染色,得到了图P_n^2的Smarandachely邻点可区别Ⅰ-全色数. 展开更多
关键词 幂图 smarandachely邻点可区别I-全染色 smarandachely邻点可区别I-全色数
下载PDF
图C_m ∨ C_n的Smarandachely邻点可区别全色数 被引量:2
18
作者 吕寻景 王龙 金瑞俊 《兰州交通大学学报》 CAS 2011年第1期142-144,共3页
图的一个正常全染色满足相邻点的色集合互不包含时被称为Smarandachely邻点可区别全染色.使图G存在使用了k种色的Smarandachely邻点可区别全染色的最小数k称为图G的Smarandachely邻点可区别全色数,其中任意一点的色集合为该点所染色与... 图的一个正常全染色满足相邻点的色集合互不包含时被称为Smarandachely邻点可区别全染色.使图G存在使用了k种色的Smarandachely邻点可区别全染色的最小数k称为图G的Smarandachely邻点可区别全色数,其中任意一点的色集合为该点所染色与其关联边所染色的并.文章给出了当(m<n)且m为偶数时,m阶圈与n阶圈的联图的Smarandachely邻点可区别全色数. 展开更多
关键词 联图 邻点可区别全染色 smarandachely邻点可区别全染色
下载PDF
一类广义Petersen图的Smarandachely邻点边染色
19
作者 梁少卫 《河北北方学院学报(自然科学版)》 2009年第5期53-55,共3页
研究了一类广义Petersen图G(n,k)的Smarandachely邻点边染色.证明了关于图的Smaran-dachely邻点边染色猜想于一类广义Petersen图成立,若n≡0(mod4),k≠0(mod4),则xs′a(G(n,k))=4,其中xs′a(G(n,k))表示G(n,k)的Smarandachely邻点边色数.
关键词 广义PETERSEN图 smarandachely邻点边染色 smarandachely邻点边色数
下载PDF
Smarandachely邻点可区别全染色的一些结论
20
作者 李永艳 《伊犁师范学院学报(自然科学版)》 2014年第4期14-16,共3页
运用分析构造的方法,给出了3阶圈与4阶圈的联图、3阶圈与5阶圈的联图、3阶圈与6阶圈的联图及5阶圈与6阶圈的联图的Smarandachely邻点可区别全色数.
关键词 联图 邻点可区别全染色 smarandachely邻点可区别全染色
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部