In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept an...In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept and next generation smart living. Various case examples have been studied and a brief summary has been provided.Furthermore, a statistical analysis has been provided in terms of security management in smart living where it is found that young technocrats give the highest importance to security management in smart living. Last but not the least, current limitation, constraints, and future scope of security implementation have been discussed in terms of crowd energy clustered with next generation smart living.展开更多
The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potenti...The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.展开更多
In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living an...In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living and crowd energy clustering. Firstly, an in-detailed overview has been provided with an introduction to B2G and V2G followed by a historical overview and theoretical analysis in respect to smart city planning. Next, a review is conducted on current and previous smart living research, which deals with B2G and V2G. Efficient B2G and V2G implementations in practical cases then have been discussed. Lastly, both of these technical prospects have been analyzed in crowd energy diagram.展开更多
基金the support provided by the University of Asia Pacific and Institute for Energy, Environment, Research and Development (IEERD)
文摘In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept and next generation smart living. Various case examples have been studied and a brief summary has been provided.Furthermore, a statistical analysis has been provided in terms of security management in smart living where it is found that young technocrats give the highest importance to security management in smart living. Last but not the least, current limitation, constraints, and future scope of security implementation have been discussed in terms of crowd energy clustered with next generation smart living.
基金supported by the Ministry of Higher Education,Malaysia under Grant No.R.J130000.7823.4L626
文摘The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.
文摘In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living and crowd energy clustering. Firstly, an in-detailed overview has been provided with an introduction to B2G and V2G followed by a historical overview and theoretical analysis in respect to smart city planning. Next, a review is conducted on current and previous smart living research, which deals with B2G and V2G. Efficient B2G and V2G implementations in practical cases then have been discussed. Lastly, both of these technical prospects have been analyzed in crowd energy diagram.