The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of...A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of SMPs and their applications, particularly to smart textiles are summarized. Current situations and potential application areas as well as future developments of smart textiles with shape memory polymers are discussed.展开更多
Under industry 4.0, internet of things(IoT), especially radio frequency identification(RFID) technology, has been widely applied in manufacturing environment. This technology can bring convenience to production contro...Under industry 4.0, internet of things(IoT), especially radio frequency identification(RFID) technology, has been widely applied in manufacturing environment. This technology can bring convenience to production control and production transparency. Meanwhile, it generates increasing production data that are sometimes discrete, uncorrelated, and hard-to-use. Thus,an efficient analysis method is needed to utilize the invaluable data. This work provides an RFID-based production data analysis method for production control in Io T-enabled smart job-shops.The physical configuration and operation logic of Io T-enabled smart job-shop production are firstly described. Based on that,an RFID-based production data model is built to formalize and correlate the heterogeneous production data. Then, an eventdriven RFID-based production data analysis method is proposed to construct the RFID events and judge the process command execution. Furthermore, a near big data approach is used to excavate hidden information and knowledge from the historical production data. A demonstrative case is studied to verify the feasibility of the proposed model and methods. It is expected that our work will provide a different insight into the RFIDbased production data analysis.展开更多
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
文摘A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of SMPs and their applications, particularly to smart textiles are summarized. Current situations and potential application areas as well as future developments of smart textiles with shape memory polymers are discussed.
基金supported by the National Natural Science Foundation of China(71571142,51275396)
文摘Under industry 4.0, internet of things(IoT), especially radio frequency identification(RFID) technology, has been widely applied in manufacturing environment. This technology can bring convenience to production control and production transparency. Meanwhile, it generates increasing production data that are sometimes discrete, uncorrelated, and hard-to-use. Thus,an efficient analysis method is needed to utilize the invaluable data. This work provides an RFID-based production data analysis method for production control in Io T-enabled smart job-shops.The physical configuration and operation logic of Io T-enabled smart job-shop production are firstly described. Based on that,an RFID-based production data model is built to formalize and correlate the heterogeneous production data. Then, an eventdriven RFID-based production data analysis method is proposed to construct the RFID events and judge the process command execution. Furthermore, a near big data approach is used to excavate hidden information and knowledge from the historical production data. A demonstrative case is studied to verify the feasibility of the proposed model and methods. It is expected that our work will provide a different insight into the RFIDbased production data analysis.