Objective] The study aimed to optimize the procedures for flavonoids ex-traction from of Lophatherum gracile. [Method] The powder of L. gracile leaf (3.0 g) was weighed and extracted fol owing an orthogonal design i...Objective] The study aimed to optimize the procedures for flavonoids ex-traction from of Lophatherum gracile. [Method] The powder of L. gracile leaf (3.0 g) was weighed and extracted fol owing an orthogonal design including the solid-liquid ratio, extraction time, extraction times and soaking time at three levels. [Result] The optimal parameters were solid-liquid ratio at 1:40, extraction time of 40 s, extraction times of two times and soaking time of 40 min. [Conclusion] Smashing tissue ex-traction of flavonoids is rapid and efficient, which provides a new method for the development and utilization of L. gracile.展开更多
Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the cont...Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the contents of ginsengsides Rg1,Rb1,and notoginsengside R1 as evaluation indexes.Methods Different parts of P.notoginseng were extracted by smashing tissue extraction(STE),ultrasound extraction,and reflux extraction.The contents of ginsengsides Rg1,Rb1,and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV.Hypersil C18 column(200 mm × 4.6 mm,5 μm) and acetonitrile-warter(20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used;UV detector was set at 203 nm;The flow rate was set at 1.0 mL/min.Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies.Conclusion STE is a fast,effective,and economical method to extract the active saponins from different parts of P.notoginseng.It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P.notoginseng.Such quick and effective extraction provides a powerful tool for analyzing P.notoginseng in the future.展开更多
Objective To optimize the extraction technology of perilla seeds oil from the oil cake of perilla seeds(OCPS)by using the contents of active fatty acids as evaluation standard.Methods The fatty acids were extracted fr...Objective To optimize the extraction technology of perilla seeds oil from the oil cake of perilla seeds(OCPS)by using the contents of active fatty acids as evaluation standard.Methods The fatty acids were extracted from OCPS,the residue of perilla seeds after cold-press,by smashing tissue extraction(STE),the new technology selected through comparing with classical leaching extraction(LE),Soxhlet extraction(SE),ultrasonic extraction(UE),and supercritical-CO2 fluid extraction(SFE).For optimized condition of STE,orthogonal test was designed and completed.The contents of five fatty acids in extracted oil and OCPS were determined by GC.Results The optimized extraction parameters were smashing for 1.5 min under extraction power of 150 W and 1:6 of the material/solvent ratio.The contents of five fatty acids in the oils extracted by five techniques from OCPS and determined by GC were as follows:α-linolenic acid(41.12%-51.81%),linoleic acid(15.38%-16.43%),oleic acid (18.93%-27.28%),stearic acid(2.56%-4.01%),and palmitic acid(7.38%-10.77%).Conclusion The results show that STE is the most efficient technology with the highest yield(LE:0.57%;SE:1.03%;UE:0.61%;SFE:0.80%;STE: 1.17%)and shortest time(LE:720 min;SE:360 min;UE:30 min;SFE:120 min;STE:1.5 min)among five tested extraction technologies.It is first reported using STE to extract herbal oil enriched with active fatty acids.展开更多
Objective To optimize the extract technology of active lignins from the fruits of Schisandra chinensis. Methods The content of schizandrin, gomisin A, and deoxyschizandrin were selected as standards to evaluate the ef...Objective To optimize the extract technology of active lignins from the fruits of Schisandra chinensis. Methods The content of schizandrin, gomisin A, and deoxyschizandrin were selected as standards to evaluate the efficiency of smashing tissue extraction (STE). Solid-liquid ratio, extracting times, ethanol concentration, and extracting time were investigated through orthogonal test. Results The optimized conditions for STE were ten times amount of 80% EtOH, extracting for three times, and 2 min for each time. Conclusion STE could obtain relatively higher yield, simplicity of operation, and benefit for environment protection. It could be better choice for the extraction of S. chinensis.展开更多
Objective To optimize the extraction technology of Taxus x media by using the contents of Paclitaxel and 10-deacetylbaccatin(10-DAB) ,two representative active diterpene alkaloids of taxane type from T.x media,as eval...Objective To optimize the extraction technology of Taxus x media by using the contents of Paclitaxel and 10-deacetylbaccatin(10-DAB) ,two representative active diterpene alkaloids of taxane type from T.x media,as evaluation standard.Methods The smashing tissue extraction(STE) of Paclitaxel and 10-DAB from T.x media,was investigated by comparing with ultrasonic extraction(UE) which was one of the modern technologies of extraction.Results STE was more efficient than UE,and the contents of 10-DAB and Paclitaxel in the extracts obtained by STE were higher than those by UE.Conclusion STE is a fast,high-performance,and energy-saving technology for the extraction of diterpene alkaloids of taxane type.STE also provides a simple,component-safe,workable,and highly efficient method for the extraction of active natural product.展开更多
Objective To optimize the extraction technology used for extracting active saponins from the roots, fibrous roots, basal part of stems, root verrucae, fruits, flowers, stems, and leaves of Panax notoginseng based on ...Objective To optimize the extraction technology used for extracting active saponins from the roots, fibrous roots, basal part of stems, root verrucae, fruits, flowers, stems, and leaves of Panax notoginseng based on the contents of ginsengsides Rg1, Rb1, and notoginsengside R1 as evaluation indexes. Methods Different parts of P. notoginseng were extracted by smashing tissue extraction (STE), ultrasound extraction, and reflux extraction. The contents of ginsengsides Rg1, Rb1, and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV. Hypersil C18 column (200 mm × 4.6 mm, 5 μm) and acetonitrile-warter (20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used; UV detector was set at 203 nm; The flow rate was set at 1.0 mL/min. Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies. Conclusion STE is a fast, effective, and economical method to extract the active saponins from different parts of P. notoginseng. It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P. notoginseng. Such quick and effective extraction provides a powerful tool for analyzing P. notoginseng in the future.展开更多
基金Supported by Special Fund for Scientific and Technological Innovation of Henan University of Traditional Chinese Medicine(2012PYTD03)~~
文摘Objective] The study aimed to optimize the procedures for flavonoids ex-traction from of Lophatherum gracile. [Method] The powder of L. gracile leaf (3.0 g) was weighed and extracted fol owing an orthogonal design including the solid-liquid ratio, extraction time, extraction times and soaking time at three levels. [Result] The optimal parameters were solid-liquid ratio at 1:40, extraction time of 40 s, extraction times of two times and soaking time of 40 min. [Conclusion] Smashing tissue ex-traction of flavonoids is rapid and efficient, which provides a new method for the development and utilization of L. gracile.
文摘Objective To optimize the extraction technology used for extracting active saponins from the roots,fibrous roots,basal part of stems,root verrucae,fruits,flowers,stems,and leaves of Panax notoginseng based on the contents of ginsengsides Rg1,Rb1,and notoginsengside R1 as evaluation indexes.Methods Different parts of P.notoginseng were extracted by smashing tissue extraction(STE),ultrasound extraction,and reflux extraction.The contents of ginsengsides Rg1,Rb1,and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV.Hypersil C18 column(200 mm × 4.6 mm,5 μm) and acetonitrile-warter(20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used;UV detector was set at 203 nm;The flow rate was set at 1.0 mL/min.Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies.Conclusion STE is a fast,effective,and economical method to extract the active saponins from different parts of P.notoginseng.It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P.notoginseng.Such quick and effective extraction provides a powerful tool for analyzing P.notoginseng in the future.
基金Chinese Northeast Characteristic Nutritional Plant Oil Construction Foundation and Industrialization Item(No.2008301026)
文摘Objective To optimize the extraction technology of perilla seeds oil from the oil cake of perilla seeds(OCPS)by using the contents of active fatty acids as evaluation standard.Methods The fatty acids were extracted from OCPS,the residue of perilla seeds after cold-press,by smashing tissue extraction(STE),the new technology selected through comparing with classical leaching extraction(LE),Soxhlet extraction(SE),ultrasonic extraction(UE),and supercritical-CO2 fluid extraction(SFE).For optimized condition of STE,orthogonal test was designed and completed.The contents of five fatty acids in extracted oil and OCPS were determined by GC.Results The optimized extraction parameters were smashing for 1.5 min under extraction power of 150 W and 1:6 of the material/solvent ratio.The contents of five fatty acids in the oils extracted by five techniques from OCPS and determined by GC were as follows:α-linolenic acid(41.12%-51.81%),linoleic acid(15.38%-16.43%),oleic acid (18.93%-27.28%),stearic acid(2.56%-4.01%),and palmitic acid(7.38%-10.77%).Conclusion The results show that STE is the most efficient technology with the highest yield(LE:0.57%;SE:1.03%;UE:0.61%;SFE:0.80%;STE: 1.17%)and shortest time(LE:720 min;SE:360 min;UE:30 min;SFE:120 min;STE:1.5 min)among five tested extraction technologies.It is first reported using STE to extract herbal oil enriched with active fatty acids.
基金E&T modern center for Natural Products of Liaoning Province of China (2008402021)
文摘Objective To optimize the extract technology of active lignins from the fruits of Schisandra chinensis. Methods The content of schizandrin, gomisin A, and deoxyschizandrin were selected as standards to evaluate the efficiency of smashing tissue extraction (STE). Solid-liquid ratio, extracting times, ethanol concentration, and extracting time were investigated through orthogonal test. Results The optimized conditions for STE were ten times amount of 80% EtOH, extracting for three times, and 2 min for each time. Conclusion STE could obtain relatively higher yield, simplicity of operation, and benefit for environment protection. It could be better choice for the extraction of S. chinensis.
基金E&T modern center for Natural Products of Liaoning Province of China (2008402021)
文摘Objective To optimize the extraction technology of Taxus x media by using the contents of Paclitaxel and 10-deacetylbaccatin(10-DAB) ,two representative active diterpene alkaloids of taxane type from T.x media,as evaluation standard.Methods The smashing tissue extraction(STE) of Paclitaxel and 10-DAB from T.x media,was investigated by comparing with ultrasonic extraction(UE) which was one of the modern technologies of extraction.Results STE was more efficient than UE,and the contents of 10-DAB and Paclitaxel in the extracts obtained by STE were higher than those by UE.Conclusion STE is a fast,high-performance,and energy-saving technology for the extraction of diterpene alkaloids of taxane type.STE also provides a simple,component-safe,workable,and highly efficient method for the extraction of active natural product.
文摘Objective To optimize the extraction technology used for extracting active saponins from the roots, fibrous roots, basal part of stems, root verrucae, fruits, flowers, stems, and leaves of Panax notoginseng based on the contents of ginsengsides Rg1, Rb1, and notoginsengside R1 as evaluation indexes. Methods Different parts of P. notoginseng were extracted by smashing tissue extraction (STE), ultrasound extraction, and reflux extraction. The contents of ginsengsides Rg1, Rb1, and notoginsengside R1 in 24 kinds of extracts were determined by HPLC-UV. Hypersil C18 column (200 mm × 4.6 mm, 5 μm) and acetonitrile-warter (20:80 for 30 min→45:55 for 18 min→70:30 for 2 min→80:20 for 10 min→100:0) were used; UV detector was set at 203 nm; The flow rate was set at 1.0 mL/min. Results STE was the most efficient technology with the highest yield of active saponins among the three tested extraction technologies. Conclusion STE is a fast, effective, and economical method to extract the active saponins from different parts of P. notoginseng. It could significantly shorten the extraction time and simplify the determination of the pre-processing work on identifying P. notoginseng. Such quick and effective extraction provides a powerful tool for analyzing P. notoginseng in the future.