In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and i...This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.展开更多
This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed ...This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using ...[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.展开更多
Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and contro...Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.展开更多
Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approac...Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.展开更多
Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one contro...Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one control method to improve the other. Moreover, many experiments are needed to improve the robustness; therefore, these control methods are underutilized. This paper proposes an integrated control system specially designed for multi-axle vehicles, in which the desired lateral force and yaw moment of vehicles are determined by the sliding mode control algorithm. The output of the sliding mode control is distributed to the suitable wheels based on the abilities and potentials of the two control methods. Moreover, in this method, fewer experiments are needed, and the robustness and simultaneity are both guaranteed. To simplify the optimization system and to improve the computation speed, seven simple optimization subsystems are designed for the determination of control outputs on each wheel. The simulation results show that the proposed controller obviously enhances the stability of multi-axle trucks. The system improves 68% of the safe velocity, and its performance is much better than both di erential braking and active steering. This research proposes an integrated control system that can simultaneously invoke di erential braking and active steering of multi-axle vehicles to fully utilize the abilities and potentials of the two control methods.展开更多
Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainabl...Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainable development of flue-cured tobacco. In order to lay a theoretical foundation for the better control of tobacco black shank, the occurrence characteristics and integrated control strategis of this disease were systematically discussed according to the aspects of agricultural control, chemical control, biological control, etc.展开更多
Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift an...Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.展开更多
Severe epidemic of false smut, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph Villosiclava virens) has been reported in different parts of Asia and America. Different fungicides or bio-control agent...Severe epidemic of false smut, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph Villosiclava virens) has been reported in different parts of Asia and America. Different fungicides or bio-control agents against false smut were applied at different times before heading on a susceptible rice variety Pu-6. A control efficiency as high as 91.92% was resulted from spraying 2.5% Wenquning, a suspension of Bacillus subtilis in solution of validamycin with 4.5 L/hm2 at 6 d before heading. Among the 186 hybrid rice screened in 2010, low significant correlations between the dates of full heading, rates of infected plants and panicles as well as the number of infected florets were found, with the correlation coefficients ranging from 0.2331 to 0.5212. However, significant difference in susceptibility coefficients was also found between the varieties which had the same dates of full heading. In the plot experiments to compare the susceptibility in 2011, the average rates of infected panicles of Yixiangyou 2168, Chuanxiangyou 3, Dexiang 4103, Yixiangyou 2115, Nei5you 317, Yangxinyou 1 were significantly lower than those of the control varieties Gangyou 725 and Gangyou 188 at the disease nursery located at Qionglai, Sichuan Province, China. When Neixiangyou 8156 and Nei5you 317 were sprayed with 2.5% Wenquning at 4.5 L/hm2 for two times at 6 d before and 1 d after heading, respectively, the control efficiencies of Nei5you 317 and Neixiangyou 8156 were respectively 100% and 82.24% compared to that of Gangyou 725. Satisfactory control effects had also obtained by single spray of 2.5% Wenquning at 4.5 L/hm2 at 5-6 d before heading. Therefore, less susceptible hybrid rice in combination with spraying Wenquning at 5-6 d before heading was suggested for the disease control in Sichuan Province, China.展开更多
The main disease species on poplar are introduced in this paper. The main content of the integrated control technique on poplar diseases is summarized:(1) Forecast technique based on the initial disease and provention...The main disease species on poplar are introduced in this paper. The main content of the integrated control technique on poplar diseases is summarized:(1) Forecast technique based on the initial disease and provention factors. (2) Control index is established, based on the relationship among the disease index, height of tree, diameter grade and the loss rate of volume. (3) Five fine varieties are selected according to three integrated indexes of host, such as resistance, volume growth and form ratio; They are 613 (Poulus alba ×P. berolinensis), A15 (P. xiaohei × P. euramericana CV. Polska-15A), A98 (P.xiaohei×(P. simonii×P. nigra) CV. A98), A102 (P. xiaohei) × (P. simonee × P. nigra) CV. A102), L2 (P. simonii × P nigra var. italica) in northeast Chnia. (4) Sivicultural control is known as the main protection measures, combined with chemical control and biocontrol,based on the disease forecast and control index by tracing the whole process of forest production.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC...A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of ...Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.展开更多
As there exists sorts of distributed generators in microgrid, an integrated control strategy containing different control methods against corresponding generators should be applied. The strategy in this paper involves...As there exists sorts of distributed generators in microgrid, an integrated control strategy containing different control methods against corresponding generators should be applied. The strategy in this paper involves PQ control and droop control methods. The former aims at letting generators like PV output maximum power. The latter stems from inverter parallel technique and applies to controlling generators which can keep the network voltage steady to make the parallel system reach the minimum circulation point. Due to the unworthiness of droop control applied in low-voltage microgrid of which the impedance ratio is rather high, the paper adopts the droop control introducing virtual generator and virtual impedance. Based on theoretical analysis, simulation in Matlab is also implemented to verify the feasibility of the strategy.展开更多
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金Supported by Innovation Guidance and Technology-based Enterprise Cultivation Program of Yunnan Science and Technology Project(202304BP090027).
文摘This paper investigates the damage symptoms and occurrence regularity related to coffee leaf rust,and proposes a comprehensive prevention and control strategy grounded in the principle of prioritizing prevention and implementing integrated prevention and control.This strategy encompasses the cultivation of rust-resistant varieties,the implementation of agricultural practices,the application of chemical interventions,the utilization of hyperparasitic fungi,and the protection and utilization of natural enemies.The paper further outlines the necessary requirements for effective prevention and control,emphasizing the importance of enhancing responsibility implementation,fostering systematic prevention and control measures,enhancing guidance services,and increasing publicity and guidance.The aim is to offer technical guidance for the integrated prevention and control of coffee leaf rust in Yunnan Province.
基金Major Program of National Natural Science Founda-tion of China (60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An integrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also conducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
基金Supported by Educational Commission of Guangxi Province of China (GJR(2007)No.70)~~
文摘[ Objective ] The paper was to explore the damage, occurrence pattern and integrated control methods of oriental fruit fly [ Bactrocera dorsalis ( Hen- del) ] in Nanning region of Guangxi Province. [ Method ] Using fixed system survey method, with fruit fly attractants as the materials, the occurrence dynamic of oriental fruit fly adult in guava orchard was investigated. The control effects of the methods such as fruit fly attractants, fruit bagging, cleaning park to pick up fallen fruit and timely spraying pesticide against the pest were also studied. [ Result] Oriental fruit fly had two damage peak periods in Nanning region of Guangxi Prov- ince (May to June, August to September). Through the integrated control measures of trapping agent for male flies, timely spraying, fruit bagging and cleaning park to pick up fallen fruit, the population density in guava orchard dropped significantly. The fruit damage rates of guava in research base were only 6.67% -7.33% during the peak period of oriental fruit fly in June 2008, while they were 90.53% -98.00% in control area, obtaining good control effect against the pest. [ Con- dttalon ] The method used in the study preliminarily restored the yield losses of guava, which also provided basis for the preparation of overall strategy against orien- tal fruit fly in the region.
基金supported by National Natural Science Foundation of China (No. 60710002, No. 60974044)
文摘Integrated guidance and control for homing missiles utilizing adaptive dynamic surface control approach is considered based on the three channels independence design idea. A time-varying integrated guidance and control model with unmatched uncertainties is first formulated for the pitch channel, and an adaptive dynamic surface control algorithm is further developed to deal with these unmatched uncertainties. It is proved that the proposed feedback controller can ensure not only the accuracy of target interception, but also the stability of the missile dynamics. Then, the same control approach is further applied to the control design of the yaw and roll channels. The 6-degree-of-freedom (6-DOF) nonlinear missile simulation results demonstrate the feasibility and advantage of the proposed integrated guidance and control design scheme.
基金supported by the Nationa Natural Science Foundation of China(60434010)Outstanding Youth Fund of Heilongjiang Province(JC200606)
文摘Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
基金Supported in part by the State Key Development Program for Basic Research of China(2012CB720505)the National Natural Science Foundation of China(61174105,60874049)
文摘Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.
基金National Natural Science Foundation of China(Grant No.51505178)China Postdoctoral Science Foundation(Grant No.2014M561289)
文摘Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one control method to improve the other. Moreover, many experiments are needed to improve the robustness; therefore, these control methods are underutilized. This paper proposes an integrated control system specially designed for multi-axle vehicles, in which the desired lateral force and yaw moment of vehicles are determined by the sliding mode control algorithm. The output of the sliding mode control is distributed to the suitable wheels based on the abilities and potentials of the two control methods. Moreover, in this method, fewer experiments are needed, and the robustness and simultaneity are both guaranteed. To simplify the optimization system and to improve the computation speed, seven simple optimization subsystems are designed for the determination of control outputs on each wheel. The simulation results show that the proposed controller obviously enhances the stability of multi-axle trucks. The system improves 68% of the safe velocity, and its performance is much better than both di erential braking and active steering. This research proposes an integrated control system that can simultaneously invoke di erential braking and active steering of multi-axle vehicles to fully utilize the abilities and potentials of the two control methods.
基金Supported by Project of Yunnan Tobacco Company of Science and Technology(2014YN20)
文摘Tobacco black shank is one of the devastating diseases of tobacco. In recent years, this disease widely occurred in most tobacco-growing areas, which caused disastrous losses and has severely threatened the sustainable development of flue-cured tobacco. In order to lay a theoretical foundation for the better control of tobacco black shank, the occurrence characteristics and integrated control strategis of this disease were systematically discussed according to the aspects of agricultural control, chemical control, biological control, etc.
基金This project is supported by Provincial Open Foundation of Key Lab forAutomobile of Jiangsu, China (No.KJS02076) and 985 Project of AutomotiveEngineering Innovation Platform of Jilin University, China.
文摘Combining with the development of automated manual transmission (AMT), the various throttle control demands are analyzed under different working conditions of AMT such as tracking acceleration pedal, start, shift and so on. Based on simulation, the responding throttle control strategies are proposed, and a simple but effective throttle control method is presented. The testing results have proved that the strategies are effective for improving the pedal tracking precision and the qualities of start and shift.
基金supported by the Special Fund for Agroscientific Research in the Public Interest, China (Grant No. 200903039-5)the Sichuan Program for Major Crop, Poultry and Livestock Breeding, China (Grant No. 2012YZGG-25-3)
文摘Severe epidemic of false smut, caused by Ustilaginoidea virens (Cooke) Takahashi (teleomorph Villosiclava virens) has been reported in different parts of Asia and America. Different fungicides or bio-control agents against false smut were applied at different times before heading on a susceptible rice variety Pu-6. A control efficiency as high as 91.92% was resulted from spraying 2.5% Wenquning, a suspension of Bacillus subtilis in solution of validamycin with 4.5 L/hm2 at 6 d before heading. Among the 186 hybrid rice screened in 2010, low significant correlations between the dates of full heading, rates of infected plants and panicles as well as the number of infected florets were found, with the correlation coefficients ranging from 0.2331 to 0.5212. However, significant difference in susceptibility coefficients was also found between the varieties which had the same dates of full heading. In the plot experiments to compare the susceptibility in 2011, the average rates of infected panicles of Yixiangyou 2168, Chuanxiangyou 3, Dexiang 4103, Yixiangyou 2115, Nei5you 317, Yangxinyou 1 were significantly lower than those of the control varieties Gangyou 725 and Gangyou 188 at the disease nursery located at Qionglai, Sichuan Province, China. When Neixiangyou 8156 and Nei5you 317 were sprayed with 2.5% Wenquning at 4.5 L/hm2 for two times at 6 d before and 1 d after heading, respectively, the control efficiencies of Nei5you 317 and Neixiangyou 8156 were respectively 100% and 82.24% compared to that of Gangyou 725. Satisfactory control effects had also obtained by single spray of 2.5% Wenquning at 4.5 L/hm2 at 5-6 d before heading. Therefore, less susceptible hybrid rice in combination with spraying Wenquning at 5-6 d before heading was suggested for the disease control in Sichuan Province, China.
文摘The main disease species on poplar are introduced in this paper. The main content of the integrated control technique on poplar diseases is summarized:(1) Forecast technique based on the initial disease and provention factors. (2) Control index is established, based on the relationship among the disease index, height of tree, diameter grade and the loss rate of volume. (3) Five fine varieties are selected according to three integrated indexes of host, such as resistance, volume growth and form ratio; They are 613 (Poulus alba ×P. berolinensis), A15 (P. xiaohei × P. euramericana CV. Polska-15A), A98 (P.xiaohei×(P. simonii×P. nigra) CV. A98), A102 (P. xiaohei) × (P. simonee × P. nigra) CV. A102), L2 (P. simonii × P nigra var. italica) in northeast Chnia. (4) Sivicultural control is known as the main protection measures, combined with chemical control and biocontrol,based on the disease forecast and control index by tracing the whole process of forest production.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金supported by the National Natural Science Foundation of China(6160150571501184)the National Aviation Science Foundation of China(20155196022)
文摘A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
基金Supported by Science and Technology Program of Guangxi Province(GK AD19245169,GK AD18281072,GK AA17202037,GK AB16380164)。
文摘Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.
文摘As there exists sorts of distributed generators in microgrid, an integrated control strategy containing different control methods against corresponding generators should be applied. The strategy in this paper involves PQ control and droop control methods. The former aims at letting generators like PV output maximum power. The latter stems from inverter parallel technique and applies to controlling generators which can keep the network voltage steady to make the parallel system reach the minimum circulation point. Due to the unworthiness of droop control applied in low-voltage microgrid of which the impedance ratio is rather high, the paper adopts the droop control introducing virtual generator and virtual impedance. Based on theoretical analysis, simulation in Matlab is also implemented to verify the feasibility of the strategy.