Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured.This article focuses on using a meshless particle-based Lagrangian numerical technique,the smoothed particles hydrody...Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured.This article focuses on using a meshless particle-based Lagrangian numerical technique,the smoothed particles hydrodynamic(SPH)method,to study the flow behaviour of blood and to explore the flow parameters that induce formation of a thrombus in a blood vessel.Due to its simplicity and effectiveness,the SPH method is employed here to simulate the process of thrombogenesis and to study the effect of various blood flow parameters.In the present SPH simulation,blood is modelled by two sets of particles that have the characteristics of plasma and of platelet,respectively.To simulate coagulation of platelets which leads to a thrombus,the so-called adhesion and aggregation mechanisms of the platelets during this process are modelled by an inter-particle force model.The transport of platelets in the flowing blood,platelet adhesion and aggregation processes are coupled with viscous blood flow for various low Reynolds number scenarios.The numerical results are compared with the experimental observations and a good agreement is found between the simulated and experimental results.展开更多
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat...Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.展开更多
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to...Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
Milling is one of the main methods for processing titanium alloy.At present,the complex process of milling is usually simulated by finite element method,which often has problems in mesh distortion and mesh reconstruct...Milling is one of the main methods for processing titanium alloy.At present,the complex process of milling is usually simulated by finite element method,which often has problems in mesh distortion and mesh reconstruction.Therefore,a meshless three-dimensional milling simulation model was established for TC4 titanium alloy using the smooth particle hydrodynamics(SPH)method.Firstly,the established SPH model was analyzed by the LS-DYNA software,and the stress distribution,temperature field,and cutting force during milling were studied under specific conditions.Subsequently,the cutting force was simulated under different cutting parameters and the effects of these parameters on the cutting force were determined.Finally,based on a series of cutting force experiments,the accuracy of the simulation model was verified.This study proves the feasibility of SPH method in the simulation of titanium alloy milling process and provides novel methods for investigating the processing mechanism and optimizing the processing technology of titanium alloys.展开更多
Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and d...Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and deformation of layered rock cells and field layered tunnels with dip angles of 0°–90°,and the results were compared with those of the laboratory tests.Three attempts,including the bedding angle,interlayer distance,and lateral pressure coefficient,were made to investigate the crack propagation and deformation of layered tunnels.Finally,the pros and cons of the KBSPH method applied in the rock field were compared with those of other methods.The results indicate that the KBSPH can explicitly reproduce crack propagation by improving the kernel function with a totally damaged symbol,and the deformation responses have been captured reasonably.We infer that this method is effective and rapid in crack propagation and large deformation simulation for other types of rock tunnels.展开更多
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ...Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.展开更多
The modeling of high velocity impact is an important topic in impact engineering.Due to various constraints,experimental data are extremely limited.Therefore,detailed numerical simulation can be considered as a desira...The modeling of high velocity impact is an important topic in impact engineering.Due to various constraints,experimental data are extremely limited.Therefore,detailed numerical simulation can be considered as a desirable alternative.However,the physical processes involved in the impact are very sophisticated;hence a practical and complete reproduction of the phenomena involves complicated numerical models.In this paper,we present a smoothed particle hydrodynamics(SPH)method to model two-dimensional impact of metal sphere on thin metallic plate.The simulations are applied to different materials(Aluminum,Lead and Steel);however the target and projectile are formed of similar metals.A wide range of velocities(300,1000,2000,and 3100 m/s)are considered in this study.The goal is to study the most sensitive input parameters(impact velocity and plate thickness)on the longitudinal extension of the projectile,penetration depth and damage crater.展开更多
The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a ...The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.展开更多
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ...Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.展开更多
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, i...This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time.展开更多
Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for ...Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.展开更多
The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. contain...The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]展开更多
Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to i...Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.展开更多
In this paper,we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics(SPH)method.In this scheme,the values of the...In this paper,we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics(SPH)method.In this scheme,the values of the inflow/outflow particles are calculated as fluid particles or imposed desired values to ensure the appropriate evolution of the flow field instead of using a renormalization process involving the fluid particles.We concentrate on handling the generation of new inflow particles using several simple approaches that contribute to the flow field stability.The advantages of theδ^(+).-SPH scheme,specifically the particle shifting technique,were successfully applied to correct the position,velocity,and pressure terms of the particles.Therefore,unexpected errors were removed and tensile instabilities of the particles were prevented.The proposed technique is validated for several benchmark test cases,and the tests show that the results match the reference solutions well.A viscous open-channel flow is used to demonstrate the stability of the flow field during the computational time.Based on this stability,we compress the computational domain to a lower resolution in a second test case while preserving the accuracy of the simulation.Flow over a backward-facing step is used to highlight the challenges of inflow boundary conditions with prescribed or non-prescribed values.The developed technique is well suited to the wall boundaries and the evolution of the flow field.The results demonstrate the robustness and versatility of the proposed technique for a variety of simulations.展开更多
文摘Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured.This article focuses on using a meshless particle-based Lagrangian numerical technique,the smoothed particles hydrodynamic(SPH)method,to study the flow behaviour of blood and to explore the flow parameters that induce formation of a thrombus in a blood vessel.Due to its simplicity and effectiveness,the SPH method is employed here to simulate the process of thrombogenesis and to study the effect of various blood flow parameters.In the present SPH simulation,blood is modelled by two sets of particles that have the characteristics of plasma and of platelet,respectively.To simulate coagulation of platelets which leads to a thrombus,the so-called adhesion and aggregation mechanisms of the platelets during this process are modelled by an inter-particle force model.The transport of platelets in the flowing blood,platelet adhesion and aggregation processes are coupled with viscous blood flow for various low Reynolds number scenarios.The numerical results are compared with the experimental observations and a good agreement is found between the simulated and experimental results.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFC3008300,Grant No.2019YFC1509702)the National Natural Science Foundation of China(Grant No.42172296).
文摘Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金the National Natural Science Foundation of China(No.52271316)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030262).
文摘Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
文摘Milling is one of the main methods for processing titanium alloy.At present,the complex process of milling is usually simulated by finite element method,which often has problems in mesh distortion and mesh reconstruction.Therefore,a meshless three-dimensional milling simulation model was established for TC4 titanium alloy using the smooth particle hydrodynamics(SPH)method.Firstly,the established SPH model was analyzed by the LS-DYNA software,and the stress distribution,temperature field,and cutting force during milling were studied under specific conditions.Subsequently,the cutting force was simulated under different cutting parameters and the effects of these parameters on the cutting force were determined.Finally,based on a series of cutting force experiments,the accuracy of the simulation model was verified.This study proves the feasibility of SPH method in the simulation of titanium alloy milling process and provides novel methods for investigating the processing mechanism and optimizing the processing technology of titanium alloys.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509702)the National Natural Science Foundation of China(Grant Nos.41731283,42007252).
文摘Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and deformation of layered rock cells and field layered tunnels with dip angles of 0°–90°,and the results were compared with those of the laboratory tests.Three attempts,including the bedding angle,interlayer distance,and lateral pressure coefficient,were made to investigate the crack propagation and deformation of layered tunnels.Finally,the pros and cons of the KBSPH method applied in the rock field were compared with those of other methods.The results indicate that the KBSPH can explicitly reproduce crack propagation by improving the kernel function with a totally damaged symbol,and the deformation responses have been captured reasonably.We infer that this method is effective and rapid in crack propagation and large deformation simulation for other types of rock tunnels.
基金Supported by the National Natural Science Foundation of China under Grant No. 10572041 and 50779008
文摘Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.
文摘The modeling of high velocity impact is an important topic in impact engineering.Due to various constraints,experimental data are extremely limited.Therefore,detailed numerical simulation can be considered as a desirable alternative.However,the physical processes involved in the impact are very sophisticated;hence a practical and complete reproduction of the phenomena involves complicated numerical models.In this paper,we present a smoothed particle hydrodynamics(SPH)method to model two-dimensional impact of metal sphere on thin metallic plate.The simulations are applied to different materials(Aluminum,Lead and Steel);however the target and projectile are formed of similar metals.A wide range of velocities(300,1000,2000,and 3100 m/s)are considered in this study.The goal is to study the most sensitive input parameters(impact velocity and plate thickness)on the longitudinal extension of the projectile,penetration depth and damage crater.
文摘The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.
基金supported by Department of Energy and Process Engineering,Norwegian University of Science and TechnologyInstitute for Energy Technology and SINTEF through the FACE(Multiphase Flow Assurance Innovation Center) Project
文摘Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.
基金Supported by National Natural Science Foundation of China(No.61272024)
文摘This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time.
基金supported by the Introduction of Talent Scientific Research Fund of Guizhou Universitythe National Key Research and Development Plan(Grant No.2016YFC0401710)the National Natural Science Foundation of China(Grant No.51279115)
文摘Abstracted/indexed in:Science Citation Index,Science Citation Index Expanded(SciSearch),Journal Citation Reports/Science Edition,SCOPUS,INSPEC,Zentralblatt Math,Chemical Abstracts Service(CAS),Google Scholar,CSA,Academic OneFile,Current Contents/Engineering,Computing and Technology,Earthquake Engineering Abstracts,EI-Compendex,Gale,OCLC,SCImago,Summon by ProQuest Supervised by Chinese Academy of Sciences
文摘Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities,long jump distances,and poor predictability.Simulation of its propagation process can provide solutions for risk assessment and mitigation design.The smoothed particle hydrodynamics(SPH)method has been successfully applied to the simulation of two-dimensional(2D)and three-dimensional(3D)flow-like landslides.However,the influence of boundary resistance on the whole process of landslide failure is rarely discussed.In this study,a boundary condition considering friction is proposed and integrated into the SPH method,and its accuracy is verified.Moreover,the Navier-Stokes equation combined with the non-Newtonian fluid rheologymodel was utilized to solve the dynamic behavior of the flow-like landslide.To verify its performance,the Shuicheng landslide event,which occurred in Guizhou,China,was taken as a case study.In the 2D simulation,a sensitivity analysis was conducted,and the results showed that the shearing strength parameters have more influence on the computation accuracy than the coefficient of viscosity.Afterwards,the dynamic characteristics of the landslide,such as the velocity and the impact area,were analyzed in the 3D simulation.The simulation results are in good agreement with the field investigations.The simulation results demonstrate that the SPH method performs well in reproducing the landslide process,and facilitates the analysis of landslide characteristics as well as the affected areas,which provides a scientific basis for conducting the risk assessment and disaster mitigation design.
基金supported by the German Research Foundation (DFG) under the Priority Program SPP 1480 'Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes'Subproject 'Modelling and Compensation of Thermal Effects for Short Hole Drilling' (EB 195/12-1)the support of the Institute for Machine Tools as well as the Materials Testing Institute of the University of Stuttgart,providing thern with necessary experimental data
文摘The prediction accuracy of a simulation method is limited by its theoretical background. This fact can lead to disadvantages regarding the simulation quality when investigating systems of high complexity, e.g. containing components showing a fairly different behavior. To overcome this limitation, co-simulation approaches are used more and more, combining the advantages of different simulation disciplines. That is why we propose a new strategy for the dynamic simulation of cutting processes. The method couples Lagrangian particle methods, such as the smoothed particle hydrodynamics (SPH) method, and multibody system (MBS) tools using co-simulations. We demonstrate the capability of the new approach by providing simulation results of an orthogonal cutting process and comparing them with experimental data. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301305]
基金The National Natural Science Foundation of China(No.50778111)The Key Project of Fund of Science and Technology Development of Shanghai(No.07JC14023)
文摘Smoothed particle hydrodynamics (SPH) is a useful meshless method.The first and second orders are the most popular derivatives of the field function in the mechanical governing equations.New methods were proposed to improve accuracy of SPH approximation by the lemma proved.The lemma describes the relationship of functions and their SPH approximation.Finally,the error comparison of SPH method with or without our improvement was carried out.
文摘In this paper,we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics(SPH)method.In this scheme,the values of the inflow/outflow particles are calculated as fluid particles or imposed desired values to ensure the appropriate evolution of the flow field instead of using a renormalization process involving the fluid particles.We concentrate on handling the generation of new inflow particles using several simple approaches that contribute to the flow field stability.The advantages of theδ^(+).-SPH scheme,specifically the particle shifting technique,were successfully applied to correct the position,velocity,and pressure terms of the particles.Therefore,unexpected errors were removed and tensile instabilities of the particles were prevented.The proposed technique is validated for several benchmark test cases,and the tests show that the results match the reference solutions well.A viscous open-channel flow is used to demonstrate the stability of the flow field during the computational time.Based on this stability,we compress the computational domain to a lower resolution in a second test case while preserving the accuracy of the simulation.Flow over a backward-facing step is used to highlight the challenges of inflow boundary conditions with prescribed or non-prescribed values.The developed technique is well suited to the wall boundaries and the evolution of the flow field.The results demonstrate the robustness and versatility of the proposed technique for a variety of simulations.