期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Crucial control on magmatic-hydrothermal Sn deposit in the Tengchong block,SW China:Evidence from magma differentiation and zircon geochemistry 被引量:4
1
作者 Qiwei Zhang Qingfei Wang +3 位作者 Gongjian Li Xiang Sun Qihai Shu Jun Deng 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第4期129-143,共15页
Magmatic-hydrothermal Sn deposits are commonly associated with high silica magmas,but why most global high silica granites do not bear economic Sn ore grades remains unclear.Two crucial factors controlling magmatic-hy... Magmatic-hydrothermal Sn deposits are commonly associated with high silica magmas,but why most global high silica granites do not bear economic Sn ore grades remains unclear.Two crucial factors controlling magmatic-hydrothermal Sn mineralization,including advanced fractionation and depressurization-induced rapid cooling,were revealed in the case study of the Guyong granitic pluton linked with the Xiaolonghe Sn deposit,in the Tengchong block,SW China.The Guyong granitic pluton comprises three petrological facies:less evolved biotite syenogranite,evolved alkali granite and leucogranite,and highly evolved facies(the protolith of greisenized granite).Similar crystallization ages(~77 Ma)and gradual contact between different petrological facies indicate the Guyong granitic pluton records a continuous fractionation process.Monte Carlo-revised Rayleigh fractionation model suggests the fractionation degree of the Guyong pluton is markedly high(>87 wt.%)that can only be achieved by a high initial water(≥4 wt.%)content in the parent granitic magma revealed by rhyolite-MELTS calculation.Advanced degree fractionation causes the first Sn enrichment but it also significantly increases the viscosity of evolved magmas,suppressing the exsolution and transport of hydrothermal fluids.Hence,it must be compensated by the second critical factor:depressurization-induced rapid cooling,reflected by the occurrence of highly metamict zircons in the greisenized granite.The highly metamict feature,indicated by the large full width at half maximum(FWHM)values of zirconν3(SiO_(4)) peak(>19.5 cm^(-1)),suggests these zircons do not experience thermal annealing but rapidly ascend into a shallow cooling environment.Depressurization-induced rapid cooling facilitates exsolution and transport of hydrothermal fluids,interacting with wall rocks and resulting in Sn mineralization. 展开更多
关键词 Magmatic-hydrothermal sn deposits Metamict zircons Fractionation Raman spectra Thermodynamic modeling
下载PDF
A Geochemical Study of Rare Earth and Trace Elements in Cassiterite from Dachang Sn-Polymetallic Ore Field,Guangxi Province
2
作者 Pan JiahuaInstitute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing 100037Amstutz G. C.Mineralogisch-Petrogrophisches Institut der Universitat Heidelberg,In Neuenheimer Feld 236, Heidelberg,Germany 《Journal of Earth Science》 SCIE CAS CSCD 1993年第1期57-63,共7页
Rare earth and trace elements are determined for cassiterite from a vein-type orebody , a lens and a sheeted-type orebody in the Dachang Sn-polymetallic ore field ,Guangxi Province .Cassiterite from the vein-type oreb... Rare earth and trace elements are determined for cassiterite from a vein-type orebody , a lens and a sheeted-type orebody in the Dachang Sn-polymetallic ore field ,Guangxi Province .Cassiterite from the vein-type orebody has rare earth and trace dement characteristics similar to that of Dachang biotite granite of Late Yanshan age, showing an inheritable and a genetic relationship. Cassiterites from the kns and sheeted-vein orebody have rare earth and trace element characteristics greatly different from those of the vein-type cassiterite and the granite,showing distinctly higher contents of the ore-forming elements As, Sb,Zn,Ag etc.and a positive Eu anomaly and a negative Ce anomaly.The difference of rare earth and trace element characteristics for cassiterite from two kinds of orebodies reflects the compositional difference of ore-forming solutions. Authors suggest that the kns and sheeted-vein orebody was of nonmagmatic , mixed with underground hot brine origin , and that this kind of hot brine reacted with Devonian and Predevonian older strata and extraced some ore-forming metals from the strata and finaly empbced along the bedding and interbyer fracture zone etc. on its ascending way driven by the Indonisian orogenic movement . The vein-type orebody was formed chiefly by post-magmatic hydrothermal sobtions derived from magma differentiation of the Dachang biotite granite . 展开更多
关键词 rare earth element trace element Dachang sn ore deposits .
下载PDF
Study on the occurrence state of indium in sphalerite of Dulong Sn–Zn–In polymetallic deposit,Southwest China
3
作者 Lisheng Gao Hanjie Wen +3 位作者 Chuanwei Zhu Xin Nie Aibing Chen Guangshu Yang 《Acta Geochimica》 EI CAS CSCD 2023年第3期572-582,共11页
The Dulong deposit,located in the Laojunshan area of southeastern Yunnan,China,is an important polymetallic deposit due to its high reserves of tin,zinc,and indium.The occurrence state of indium is critical for unders... The Dulong deposit,located in the Laojunshan area of southeastern Yunnan,China,is an important polymetallic deposit due to its high reserves of tin,zinc,and indium.The occurrence state of indium is critical for understanding its supernormal enrichment mechanism.Previous studies investigated the occurrence state of indium(including the valence state)based on the indium content in sphalerite and the correlation between metal concentrations.However,more evidence is needed to better constrain indium occurrence at the micro-,nano-,or even atomic scale.In this study,EPMA-FIB-SEM-TEM and XPS techniques were employed to investigate the indium distribution characteristics and occurrence state in sphalerite from the Dulong Sn–Zn–In polymetallic deposit.The maximum concentration of indium in the indium-rich sphalerite samples is 0.37%,and the results of the EPMA analysis showed a relatively homogeneous distribution of indium in sphalerite.The FIB-SEM-TEM results demonstrated that the lattice stripes of sphalerite were periodically and continuously distributed at the nanoscale,confirming that sphalerite in the deposit was an excellent single crystal structure,and the peak heights of the various characteristic peaks of indium in the EDX spectra were relatively close to each other,with no distinct peaks of high indium content.In addition,the XPS results indicate that the element valence state of indium in sphalerite is In^(3+),and it combines with S^(2-)to form a bond.These results indicate that indium in sphalerite of the Dulong deposit is uniformly distributed at both the micro-and nanoscale,and there is no indium-independent mineral.In^(3+)enters the crystal lattice of sphalerite by replacing Zn2+in the form of isomorphic substitution. 展开更多
关键词 SPHALERITE INDIUM Occurrence state Dulong sn–Zn–In polymetallic deposit
下载PDF
Manufacturing Nano Electrode is Sensitive to Light for Produce Hydrogen Fuel
4
作者 Haleemah J. Mohammed Kassim M. Sahan 《Journal of Physical Science and Application》 2016年第1期98-104,共7页
This research is aimed at preparing nano (WO3:Sn) thin film, so that manufacturing anode electrode for a cell electrolysis to produce hydrogen fuel, this thin film was prepared on glass substrates by using depositi... This research is aimed at preparing nano (WO3:Sn) thin film, so that manufacturing anode electrode for a cell electrolysis to produce hydrogen fuel, this thin film was prepared on glass substrates by using deposition laser pulse (LPD) technique have been studying optical properties through the spectra of absorbance and transmittance, was determine the optical energy gap was observed that the permeability increases with the wavelength found that these films have high transmittance in the visible spectral region. The allowed direct band gap was found to increase from (2.9 eV) structured characteristics was studied through the analysis of X-ray diffraction (XRD) of the prepared film for determining the yielding phase which are to set the with standard tables. Also, the sample was tested atomic force microscope to identify the roughness of prepared films surface, and has been the study of the volume of gas output voltages with change, time and current. 展开更多
关键词 Anode electrode nano (WO3:sn deposition laser pulse (LPD) X-ray diffraction atomic force microscope.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部