期刊文献+
共找到5,255篇文章
< 1 2 250 >
每页显示 20 50 100
Sn-Zn合金包覆PAN基碳纤维/聚六氟丙烯有机光纤材料的制备
1
作者 孔德忠 周浩然 《合成树脂及塑料》 CAS 北大核心 2024年第2期38-41,共4页
采用Sn-Zn合金包覆聚丙烯腈(PAN)基碳纤维,以聚六氟丙烯为载体制备塑料光纤(POF)皮层材料,并将POF皮层材料与聚苯乙烯光纤芯材进行匹配,研究了材料在力学性能、传输损耗性、光场强度方面的变化。结果表明:Sn-Zn合金表面包覆PAN基碳纤维... 采用Sn-Zn合金包覆聚丙烯腈(PAN)基碳纤维,以聚六氟丙烯为载体制备塑料光纤(POF)皮层材料,并将POF皮层材料与聚苯乙烯光纤芯材进行匹配,研究了材料在力学性能、传输损耗性、光场强度方面的变化。结果表明:Sn-Zn合金表面包覆PAN基碳纤维与聚六氟丙烯结合紧密,作为POF皮层材料的效果良好,在最常见的650 nm波长、100 m内,传输低于100 Mb/s速率数据信息的能力符合要求,光信号基本环绕着光纤芯材传播,没有过多的光信号因为皮层材质的缘故而散失,表明该皮层材料与聚苯乙烯光纤芯材的匹配性较高。 展开更多
关键词 sn-zn合金 聚丙烯腈基碳纤维 聚六氟丙烯 塑料光纤皮层材料 传输损耗
下载PDF
新型Sn-Zn系焊铝锡膏的制备 被引量:1
2
作者 宁馨锋 郭瑛 +2 位作者 刘慧颖 郭天浩 马海涛 《材料与冶金学报》 CAS 北大核心 2024年第1期36-41,47,共7页
研制了一种新型Sn-Zn系焊铝锡膏.根据焊铝锡膏成分组成特点,以Sn-Zn系无铅锡粉为基础,对助焊膏中活性剂、活性盐、表面活性剂和溶剂等添加剂进行筛选,通过正交试验对其组分进行优化并制备出焊铝锡膏.结果表明:活性剂部分,有机胺A质量的... 研制了一种新型Sn-Zn系焊铝锡膏.根据焊铝锡膏成分组成特点,以Sn-Zn系无铅锡粉为基础,对助焊膏中活性剂、活性盐、表面活性剂和溶剂等添加剂进行筛选,通过正交试验对其组分进行优化并制备出焊铝锡膏.结果表明:活性剂部分,有机胺A质量的增加会降低钎料在240℃和260℃下的润湿性;活性盐部分,锌盐和亚锡盐有利于扩大钎料铺展面积,但添加铵盐会降低钎料的润湿性;表面活性剂部分,添加OP-10的实验效果要优于添加油酸酰胺的实验效果.基于以上研究结果自制出的焊铝锡膏可用于低温钎焊1060铝,焊接质量良好,界面处未见明显焊接缺陷,且焊铝锡膏具有良好的存储稳定性.研究结果可为铝合金钎焊用焊铝锡膏的应用和开发提供理论和技术支持. 展开更多
关键词 铝合金 焊铝锡膏 助焊膏 正交试验
下载PDF
A comprehensive review of radiation effects on solder alloys and solder joints
3
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +3 位作者 Nor Azlian Abdul Manaf Azuraida Amat Nurazlin Ahmad Emee Marina Salleh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期86-102,共17页
In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines r... In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field. 展开更多
关键词 Defence technology solder alloy solder joints Radiation-induced effect MICROSTRUCTURE Mechanical properties
下载PDF
A review of extreme condition effects on solder joint reliability:Understanding failure mechanisms
4
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +2 位作者 Azuraida Amat Nor Azlian Abdul Manaf Nurazlin Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期134-158,共25页
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w... Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance. 展开更多
关键词 solder joint Extreme condition Failure mechanism Defence and military RELIABILITY
下载PDF
Preventing formation of intermetallic compounds in ultrasonic-assisted Sn soldering of Mg/Al alloys through pre-plating a Ni coating layer on the Mg substrate
5
作者 Yingzong Liu Yuanxing Li +1 位作者 Hui Chen Zongtao Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期726-741,共16页
Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joi... Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals. 展开更多
关键词 Ultrasonic-assisted soldering Mg_(2)Sn Ni coating layer Shear strength
下载PDF
Industrial Fusion Cascade Detection of Solder Joint
6
作者 Chunyuan Li Peng Zhang +2 位作者 Shuangming Wang Lie Liu Mingquan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1197-1214,共18页
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de... With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area. 展开更多
关键词 Cascade object detection deep learning feature fusion multi-scale and multi-template matching solder joint dataset
下载PDF
Effect of Mo and ZrO_(2)nanoparticles addition on interfacial properties and shear strength of Sn58Bi/Cu solder joint
7
作者 Amares SINGH Hui Leng CHOO +1 位作者 Wei Hong TAN Rajkumar DURAIRAJ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2619-2628,共10页
The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(... The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint. 展开更多
关键词 lead-free solder interfacial microstructure IMC layer thickness shear strength dislocation density ZrO_(2)nanoparticles Mo nanoparticles
下载PDF
Mechanical and Electrical Properties of Some Sn-Zn Based Lead-Free Quinary Alloys
8
作者 Shihab Uddin Md. Abdul Gafur +1 位作者 Suraya Sabrin Soshi Mohammad Obaidur Rahman 《Materials Sciences and Applications》 2024年第7期213-227,共15页
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ... Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy. 展开更多
关键词 Lead-Free solder Strain Rate Ultimate Tensile Strength DUCTILITY Electrical Conductivity
下载PDF
Preparation and Properties of Particle Reinforced Sn-Zn-based Composite Solder 被引量:4
9
作者 黄惠珍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期206-209,共4页
Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ CusZn8 particles are formed and distributed uniformly in the compo... Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ CusZn8 particles are formed and distributed uniformly in the composite solders. The strength and plasticity of the composite solders were improved, and creep resistance was considerably enhanced. The wettability of these composite solders is also better than that of Sn-9Zn. 展开更多
关键词 lead-free solder sn-zn alloy Cu powders composite solder WETTABILITY
下载PDF
Effect of Ga on microstructure and properties of Sn-Zn-Bi solder for photovoltaic ribbon 被引量:8
10
作者 Zhang Min Xu Huanrui +1 位作者 Wang Gang Zhu Ziyue 《China Welding》 EI CAS 2019年第4期1-7,共7页
In this study,SEM,EDS,XRD and other test methods were used to study the effects of different Ga contents(0~2 wt.%)on microstructure,electrical conductivity,spreading area and mechanical properties of Sn-9Zn-3Bi solder... In this study,SEM,EDS,XRD and other test methods were used to study the effects of different Ga contents(0~2 wt.%)on microstructure,electrical conductivity,spreading area and mechanical properties of Sn-9Zn-3Bi solder.The results revealed that the microstructure of Sn-Zn-Bi-Ga solder alloy was mainly composed ofβ-Sn,Zn-rich,Bi-rich phase and Sn-Zn eutectic structure.The Ga can significantly improve the wettability of Sn-Zn-Bi on the pure copper,the maximum wetting area was 105.3 mm^2.With the increase of the Ga content the melting point of the solders decreased from 195℃to 177℃.In addition,the Ga element can increase the oxidation resistance of solder.Its conductivity showed a decreasing trend with the gradual increase of the Ga content.With the increased of the Ga content the IMC(Intermetallic Compound)of Sn-Zn-Bi-xGa/Cu is only Cu5Zn8 and its thickness decreased remarkably. 展开更多
关键词 sn-zn-Bi-Ga solder microstructure wetting area intermetallic compound
下载PDF
Wettability of Sn-Zn-Bi Based Lead-Free Solder with Rare Earths
11
作者 Zhang Jiangang Huang Jihua Dai Zhifeng Zhang Hua Zhao Xingke 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期632-632,共1页
Effect of different contents of La and Ga on the wettability and the mierostrueture of interface of Sn-8.9Zn- 2.7Bi trinary alloys was studied. The results show that different contents of La and Ga have significant ef... Effect of different contents of La and Ga on the wettability and the mierostrueture of interface of Sn-8.9Zn- 2.7Bi trinary alloys was studied. The results show that different contents of La and Ga have significant effect on the wettability of Sn-Zn-Bi based lead-free solder under the condition of both atmosphere and nitrogen. By adding suitable amount of Ga, Cu and La to Sn-Zn-Bi solder, a new lead-free solder Sn-8.9Zn-2.7Bi- 1.0Ga-0.5Cu-0.2La with better wettability was prepared, which has a wetting angle of 25.1° to Cu. 展开更多
关键词 sn-zn-Bi WETTABILITY lead-free solder rare earths
下载PDF
Effect of a Trace of Bi and Ni on the Microstructure and Wetting Properties of Sn-Zn-Cu Lead-Free Solder
12
作者 Haitao MA Haiping XIE Lai WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期81-84,共4页
The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu ... The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu substrate were also examined. The results indicated that the addition of 3 wt pct Bi could decrease the melting point of the solder and Ni would refine the microstructure and the rod-shape Cu5Zn8 phase changed into square-shape (Cu, Ni)5Zn8 phase. The addition of Bi, Ni greatly improved the wettability of SZC solder. In addition, the interracial phase of the solders/Cu joint was typical planar Cu5Zn8 in SZC-3Bi-INi alloy. 展开更多
关键词 Lead-free solder MICROSTRUCTURE Wetting property Interfacial reaction Intermetallic compounds
下载PDF
Thermal and Electrical Properties of Sn-Zn-Bi Ternary Soldering Alloys
13
作者 M. A. Wadud M. A. Gafur +1 位作者 M. R. Qadir M. O. Rahman 《Materials Sciences and Applications》 2015年第11期1008-1013,共6页
Sn-Zn based solder is a possible replacement of Pb solder because of its better mechanical properties. The alloys need to be studied and explored to get a usable solder alloy having better properties. In this work, eu... Sn-Zn based solder is a possible replacement of Pb solder because of its better mechanical properties. The alloys need to be studied and explored to get a usable solder alloy having better properties. In this work, eutectic Sn-9Zn and three Tin-Zinc-Bismuth ternary alloys were prepared and investigated their thermal and electrical properties. Thermo-mechanical Analysis and Differential Thermal Analysis were used to investigate thermal properties. Microstructural study is carried out with Scanning Electron Microscope. The alloys have single melting point. The co-efficient of thermal expansion and co-efficient of thermal contraction varies with alloy composition and temperature range. Electrical conductivity changes with Bi addition. 展开更多
关键词 Lead Free solder ALLOY EUTECTIC ALLOY DTA TMA Conductivity
下载PDF
A review of soldering by localized heating
14
作者 崔鹏 杨婉春 +3 位作者 彭飞 祝温博 杨帆 李明雨 《China Welding》 CAS 2023年第2期1-15,共15页
In recent years,the rapid development of the new energy industry has driven continuous upgrading of high-density and high-power devices.In the packaging and assembly process,the problem of differentiation of the therm... In recent years,the rapid development of the new energy industry has driven continuous upgrading of high-density and high-power devices.In the packaging and assembly process,the problem of differentiation of the thermal needs of different modules has become increasingly prominent,especially for small-size solder joints with high heat dissipation in high-power devices.Localized soldering is con-sidered a suitable choice to selectively heat the desired target while not affecting other heat-sensitive chips.This paper reviews several local-ized soldering processes,focusing on the size of solder joints,soldering materials,and current state of the technique.Each localized solder-ing process was discovered to have unique characteristics.The requirements for small-size solder joints are met by laser soldering,microres-istance soldering,and self-propagating soldering;however,laser soldering has difficulty meeting the requirements for large heat dissipation,microresistance soldering requires the application of pressure to joints,and self-propagating soldering requires ignition materials.However,for small-size solder junctions,selective wave soldering,microwave soldering,and ultrasonic soldering are not appropriate.Because the magnetic field can be focused on a tiny area and the output energy of induction heating is large,induction soldering can be employed as a significant trend in future research. 展开更多
关键词 localized soldering high heat dissipation small size induction soldering focused heating
下载PDF
Interfacial reaction behavior and mechanical properties of 5A06 Al alloy soldered with Sn-1Ti-xGa solders at a low temperature
15
作者 宋立志 肖勇 +2 位作者 奚邦富 李佳琪 张建 《China Welding》 CAS 2023年第2期23-31,共9页
Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were ... Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were investigated. The results showed that the Sn-1Tisolder broke the oxide film on the surface of the Al substrate and induced intergranular diffusion in the Al substrate. When Ga was added tothe solder, severe dissolution pits appeared in the Al substrate due to the action of Sn-1Ti-0.3Ga solder, and many Al particles were flakedfrom the matrix into the solder seam. Under thermal stress and the Ti adsorption effect, the oxide film cracked. With increasing solderingtime, the shear strength of 5A06 Al alloy joints soldered with Sn-1Ti and Sn-1Ti-0.3Ga active solders increased. When soldered for 90 min,the joint soldered with Sn-1Ti-0.3Ga solder had a higher shear strength of 22.12 MPa when compared to Sn-1Ti solder. 展开更多
关键词 5A06-Al alloy Sn-Ti-Ga solder low-temperature soldering interfacial reaction mechanical properties
下载PDF
Research Progress on the Solder Joint Reliability of Electronics Using in Deep Space Exploration
16
作者 Qilong Guan Chunjin Hang +4 位作者 Shengli Li Dan Yu Ying Ding Xiuli Wang Yanhong Tian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期16-28,共13页
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab... The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments. 展开更多
关键词 Deep space exploration Extreme environments solder joints MICROSTRUCTURE ELECTRONICS RELIABILITY
下载PDF
Effect of Strain Rate on Tensile Behavior of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} Lead-Free Solder Alloys
17
作者 Shihab Uddin Md. Abdul Gafur Mohammad Obaidur Rahman 《Materials Sciences and Applications》 CAS 2023年第4期273-283,共11页
The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carrie... The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carried out at room temperature at the strain rate of 4.17 × 10<sup>-3</sup> s<sup>-1</sup>, 20.85 × 10<sup>-3</sup> s<sup>-1</sup>, and 208.5 × 10<sup>-3</sup> s<sup>-1</sup>. It is seen that the tensile strength increases and the ductility decrease with increasing the strain rate over the investigated range. From the strain rate change test results, the strain sensitivity values are found in the range of 0.0831 to 0.1455 due to the addition of different alloying elements. 展开更多
关键词 Lead-Free solder Strain Rate Strain Sensitivity DUCTILITY Tensile Properties
下载PDF
大尺寸AlN活性金属焊接覆铜基板的界面结合机理 被引量:1
18
作者 许海仙 曾祥勇 +3 位作者 朱家旭 周泽安 张振文 汤文明 《电子元件与材料》 CAS 北大核心 2024年第5期573-577,584,共6页
基于190 mm×139 mm×0.635 mm的大尺寸AlN表面活性金属钎焊(AMB)覆铜板工艺制程,开展其界面显微组织、物相组成等的研究,确定钎焊界面结合机理,为制备大尺寸、低气孔、高剥离强度AlN-AMB覆铜板提供支持。结果表明,在大尺寸AlN-... 基于190 mm×139 mm×0.635 mm的大尺寸AlN表面活性金属钎焊(AMB)覆铜板工艺制程,开展其界面显微组织、物相组成等的研究,确定钎焊界面结合机理,为制备大尺寸、低气孔、高剥离强度AlN-AMB覆铜板提供支持。结果表明,在大尺寸AlN-AMB覆铜板钎焊过程中,Ag-Cu-Ti合金钎料中的Ag-Cu合金与Cu箔扩散溶合,形成强的冶金结合界面。同时,钎料中的活性Ti原子向AlN基板表面扩散,并与其反应,生成厚度为0.5~1μm的TiN反应层,形成强的反应结合界面。此外,钎料熔体难以填充基板的AlN晶界和凹坑,其中的Ti原子也不与Y-Al-O第二相颗粒反应,导致AlN基板表面TiN反应层不连续分布,形成气孔,降低大尺寸AlN-AMB覆铜板的界面结合强度及可靠性。 展开更多
关键词 氮化铝基板 活性金属钎焊 显微结构 相组成 AG-CU-TI钎料
下载PDF
镁合金建筑模板的表面化学镀与耐蚀性能
19
作者 孙伟清 陈微 王玮琪 《电镀与精饰》 CAS 北大核心 2024年第10期34-41,共8页
采用化学镀的方法在镁合金建筑模板表面分别制备了单一Sn膜、单一Zn膜和复合Sn-Zn膜,对比分析了pH、温度和膜层数对镁合金表面膜层显微形貌和电化学性能的影响。结果表明:对于单一膜,在pH值为6.0、温度为75℃时制备的单一Sn膜和在pH值为... 采用化学镀的方法在镁合金建筑模板表面分别制备了单一Sn膜、单一Zn膜和复合Sn-Zn膜,对比分析了pH、温度和膜层数对镁合金表面膜层显微形貌和电化学性能的影响。结果表明:对于单一膜,在pH值为6.0、温度为75℃时制备的单一Sn膜和在pH值为9.5、温度为75℃时制备的单一Zn膜都具有较好成膜质量;当膜层数为9时,复合Sn-Zn膜完全覆盖镁合金基体且膜层成膜质量较好。相较于镁合金基体,单一Sn膜、单一Zn膜、复合Sn-Zn膜的腐蚀电位都发生正向移动,腐蚀电流密度发生不同程度减小,复合Sn-Zn膜的腐蚀电位最正、腐蚀电流密度最小。在镁合金基体表面化学镀单一Sn膜、单一Zn膜、复合Sn-Zn膜都有助于提升镁合金的耐蚀性能,且复合Sn-Zn膜对基体的保护作用要优于单一Sn膜、单一Zn膜。 展开更多
关键词 AZ91镁合金 建筑模板 化学镀 sn-zn复合膜 耐蚀性能
下载PDF
Cu_(6)Sn_(5)纳米颗粒对SAC3005/Cu焊点形貌和性能的影响
20
作者 王彪 赵建华 +2 位作者 刘一澎 杨杰 严继康 《电子元件与材料》 CAS 北大核心 2024年第1期121-126,共6页
研究了添加Cu_(6)Sn_(5)纳米颗粒对SAC3005焊料焊点金属间化合物的形貌和性能的影响。采用湿化学法制备Cu_(6)Sn_(5)纳米颗粒,将Cu_(6)Sn_(5)纳米颗粒添加到SAC3005焊料中,经回流焊后,制备SAC3005-xCu_(6)Sn_(5)(x=0%,0.12%,0.18%,质量... 研究了添加Cu_(6)Sn_(5)纳米颗粒对SAC3005焊料焊点金属间化合物的形貌和性能的影响。采用湿化学法制备Cu_(6)Sn_(5)纳米颗粒,将Cu_(6)Sn_(5)纳米颗粒添加到SAC3005焊料中,经回流焊后,制备SAC3005-xCu_(6)Sn_(5)(x=0%,0.12%,0.18%,质量分数)复合焊点。采用金相显微镜对焊点的横断面进行观察,对焊点的横断面金属间化合物(IMCs)进行测量。采用ANSYS有限元软件对界面IMCs模型进行模拟,分析印刷电路板(PCB板)焊点失效机理。结果表明:添加Cu_(6)Sn_(5)纳米颗粒改性SAC3005/Cu焊点后的IMCs层厚度变薄。Cu_(6)Sn_(5)纳米颗粒的加入抑制了回流焊接过程中IMCs的生长,提高了焊点的可靠性。Cu_(6)Sn_(5)纳米颗粒的添加阻碍了Sn原子和Cu原子在界面处的扩散,抑制了Cu_(6)Sn_(5)IMCs的生长。添加质量分数为0.12%的Cu_(6)Sn_(5)纳米颗粒时抑制效果最好。焊点界面Cu_(6)Sn_(5)层和Cu_(3)Sn层是应力应变集中的地方,焊点交界处为焊点服役过程中的薄弱环节。 展开更多
关键词 Cu_(6)Sn_(5)纳米颗粒 SAC3005焊料 金属间化合物 可靠性
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部