In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be se...In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be separated from Sn effectively. Based on the above calculation, the industrial experiments of vacuum distillation of Sn-Pb alloy, Sn-Pb-Sb alloy, Sn-Pb-Sb-As alloy, crude Sn and Sn-Zn alloy with different contents were carried out. The experimental results show that Pb(>99% Pb) and Sn(≤0.003% Pb) were obtained simultaneously while Sn-Pb alloy was subjected to vacuum distillation; the crude Sn(>90% Sn, ≤ 2% Pb, ≤6% Sb) and crude Pb(≤2% Sn) were obtained simultaneously while a single vacuum distillation was carried out for Sn-Pb-Sb alloy; the Pb and Bi contents in the Sn ingot(99.99% Sn) achieve the grade A of GB/T 728—2010 standard, more than 50% of As and Sb was removed after vacuum distillation of crude Sn; Zn(<0.002% Sn) and Sn(about 3% Zn) were obtained while vacuum distillation of Sn-Zn alloy was conducted at 1173 K, 20-30 Pa for 8-10 h.展开更多
针对巴氏合金ZChSnSb11-6工作过程中的蠕变现象,对合金进行蠕变实验。基于蠕变实验所得蠕变曲线,证实ZChSnSb11-6在实际工作条件下会发生明显的蠕变现象,同时利用WDW-E100D试验机,获得ZChSnSb11-6蠕变前后的屈服强度等力学性能。通...针对巴氏合金ZChSnSb11-6工作过程中的蠕变现象,对合金进行蠕变实验。基于蠕变实验所得蠕变曲线,证实ZChSnSb11-6在实际工作条件下会发生明显的蠕变现象,同时利用WDW-E100D试验机,获得ZChSnSb11-6蠕变前后的屈服强度等力学性能。通过分析合金蠕变、力学性能和显微组织之间的关系,得知蠕变明显降低ZChSnSb11-6的强度、塑性及抗弹性变形能力,并得到合金蠕变机理,明确ZChSnSb11-6蠕变变形是应变硬化与再结晶回复长时间交替作用的结果。通过计算合金的应变硬化指数,证实蠕变使合金均匀变形的能力降低,增大合金发生断裂破坏的可能性。同时,基于硬度试验获得合金硬度随温度变化的计算公式,确定ZChSnSb11-6的蠕变临界温度范围为50~60℃。通过观察ZChSnSb11-6蠕变前后的显微组织,发现蠕变使合金组织中SnSb和Cu 6 Sn 5明显减少,导致合金力学性能降低。展开更多
Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as subs...Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.展开更多
基金Project(2014HA003)supported by the Cultivating Plan Program for the Technological Leading Talents of Yunnan Province,ChinaProject(51474116)supported by the National Natural Science Foundation of China+2 种基金Project(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(20140355)supported by the Analytical Test Fund of Kunming University of Science and Technology,Chinasupported by the First-class Doctoral Dissertation Breeding Foundation of Kunming University of Science and Technology,China
文摘In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be separated from Sn effectively. Based on the above calculation, the industrial experiments of vacuum distillation of Sn-Pb alloy, Sn-Pb-Sb alloy, Sn-Pb-Sb-As alloy, crude Sn and Sn-Zn alloy with different contents were carried out. The experimental results show that Pb(>99% Pb) and Sn(≤0.003% Pb) were obtained simultaneously while Sn-Pb alloy was subjected to vacuum distillation; the crude Sn(>90% Sn, ≤ 2% Pb, ≤6% Sb) and crude Pb(≤2% Sn) were obtained simultaneously while a single vacuum distillation was carried out for Sn-Pb-Sb alloy; the Pb and Bi contents in the Sn ingot(99.99% Sn) achieve the grade A of GB/T 728—2010 standard, more than 50% of As and Sb was removed after vacuum distillation of crude Sn; Zn(<0.002% Sn) and Sn(about 3% Zn) were obtained while vacuum distillation of Sn-Zn alloy was conducted at 1173 K, 20-30 Pa for 8-10 h.
文摘针对巴氏合金ZChSnSb11-6工作过程中的蠕变现象,对合金进行蠕变实验。基于蠕变实验所得蠕变曲线,证实ZChSnSb11-6在实际工作条件下会发生明显的蠕变现象,同时利用WDW-E100D试验机,获得ZChSnSb11-6蠕变前后的屈服强度等力学性能。通过分析合金蠕变、力学性能和显微组织之间的关系,得知蠕变明显降低ZChSnSb11-6的强度、塑性及抗弹性变形能力,并得到合金蠕变机理,明确ZChSnSb11-6蠕变变形是应变硬化与再结晶回复长时间交替作用的结果。通过计算合金的应变硬化指数,证实蠕变使合金均匀变形的能力降低,增大合金发生断裂破坏的可能性。同时,基于硬度试验获得合金硬度随温度变化的计算公式,确定ZChSnSb11-6的蠕变临界温度范围为50~60℃。通过观察ZChSnSb11-6蠕变前后的显微组织,发现蠕变使合金组织中SnSb和Cu 6 Sn 5明显减少,导致合金力学性能降低。
基金Projects(50371104,50771106and50731002)supported by the National Natural Science Foundation of ChinaProject(2008K22)supported by the Scientific Research Foundation of Hunan Provincial Department of Land&Resources,ChinaProject supported by Geology Exploration Foundation of Hunan Provincial Department of Land&Resources,China
文摘Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.