SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def...The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.展开更多
Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)na...Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides.展开更多
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an...The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.展开更多
It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO...It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO2 molecules over Indium-doped SnP3 catalyst were systematically studied.Through doping with indium(In)atom,the energy barrier of CO2 protonation is reduced and OCHO*species could easily be generated.This is mainly due to the p orbital of In exhibits strong hybridization with the p orbital of O,indicating that there is a strong interaction between OCHO*and In-doped SnP3 catalyst.As a result,In-doped SnP3 possesses high-efficiency and high-selectivity for converting CO2 into HCOOH with a low limiting potential of-0.17 V.Our findings will offer theoretical guidance to CO2 electroreduction.展开更多
The effects of additive SnO2 (0.4wt.%), with and without SiO2 (0.02wt.%) and/or CaO (0.04wt.%), on the microstructure and magnetic properties of Mn-Zn ferrites were reported. The results reveal that SnO2 on its own in...The effects of additive SnO2 (0.4wt.%), with and without SiO2 (0.02wt.%) and/or CaO (0.04wt.%), on the microstructure and magnetic properties of Mn-Zn ferrites were reported. The results reveal that SnO2 on its own increases the initial permeability (μi) slightly, but SnO2 with SiO2 and/or CaO decreases the values of μi. However, ferrites with SnO2 additions have reduced power losses. The separate contributions of hysteresis loss and eddy current loss to the total power loss show that SnO2 (with or without SiO2 and/or CaO) doping increases the hysteresis loss slightly, but SnO2 doping alone reduces the eddy current loss significantly (~14%). The additions of SiO2 or CaO further decrease the eddy current loss, and by interaction of SnO2-CaO-SiO2, the eddy current loss is reduced by more than 20%. These magnetic and microstructural effects were discussed in terms of the additive-impurity interaction, the existence of grain boundary phases, and the effective bulk and grain boundary resistivities of the ferrites.展开更多
The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-...The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga_2O_3 are in good agreement with experimental results. Si-and Sn-doped β-Ga_2O_3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga_2O_3 is larger than that of Sn-doped β-Ga_2O_3 because of the large bond length variation between Ga–O and Si–O. Si-and Sn-doped β-Ga_2O_3 have wider optical gaps than β-Ga_2O_3, due to the Burstein–Moss effect and the bandgap renormalization effect. Si-doped β-Ga_2O_3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga_2O_3, so Si is more suitable as a dopant of n-type β-Ga_2O_3, which can be applied in deep-UV photoelectric devices.展开更多
We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an avera...We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.展开更多
The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in t...The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in this paper. The results obtained by cyclic voltammetry (CV), electrochemical impedance spectroscopic (EIS), X-ray Diffraction (XRD) and scanning electron microscopy (SEM) indicated that PbO2 crystal grains presented honeycomb structure were formed on the electrode surface by doping with Ce. The specific surface areas and catalytic active sites of the Ce-PbO2 doped electrode were increased and the catalytic activity was evidently greater than the undoped one. However, when Ce was doped into the intermediate layer (SnO2+Mn2O3), a more cracked surface structure formed, thus leading electrode deactivation by passivation of the Ti-substrate. So the anodic stability was decreased according to the accelerated life tests.展开更多
In this paper, SnS_2 nanosheets arrays sandwiched by porous N-doped carbon and TiO_2(TiO_2@SnS_2@N-C) on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries...In this paper, SnS_2 nanosheets arrays sandwiched by porous N-doped carbon and TiO_2(TiO_2@SnS_2@N-C) on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries. The as-obtained TiO_2@SnS_2@N-C composite delivers a remarkable capacity performance(840 mA h g^(-1) at a current density of 200 mA g^(-1)), excellent rate capability and long-cycling life stability(293 mA h g^(-1) at 1 A g^(-1) after 600 cycles). The excellent electrochemical performance can be attributed to the synergistic effect of each component of the unique hybrid structure, in which the SnS_2 nanosheets with open framworks offer high capacity, while the porous N-doped carbon nanoplates arrays on flexible carbon cloth are able to improve the conductivity and the TiO_2 passivation layer can keep the structure integrity of SnS_2 nanosheets.展开更多
This study proved the significance of simulated sunlight irradiation response capability of Sn-F co-doped TiO_(2)/SiO_(2)(Sn-F-TiO_(2)/SiO_(2))photocatalysts,which were prepared by a simple sol-gel method and were eva...This study proved the significance of simulated sunlight irradiation response capability of Sn-F co-doped TiO_(2)/SiO_(2)(Sn-F-TiO_(2)/SiO_(2))photocatalysts,which were prepared by a simple sol-gel method and were evaluated by acrylonitrile degradation for photocatalytic activity.The synthesized catalysts were characterized by X-ray Diffraction(XRD),Scanning Electron Microscopy(SEM),Energy Dispersive Spectrometer(EDS),X-ray Photoelectron Spectroscopy(XPS),Brunauer-Emmett-Teller(BET),Ultraviolet-Visible Absorption spectroscopy(UV-Vis),and Photoluminescence Spectroscopy(PL).UV-Visible spectroscopy demonstrated that Sn doping caused remarkable red shift in TiO_(2),which significantly increased the absorption efficiency of the catalysts.The XPS results showed that Sn was successfully doped into the TiO_(2) lattice.The photocatalytic degradation of acrylonitrile indicated that the Sn-F-TiO_(2)/SiO_(2) photocatalysts exhibited excellent photocatalytic activity when being annealed at 550℃for 2 h.The degradation rate of acrylonitrile reached 67.7%after irradiation under simulated sunlight for 6 min,and the hole was the most important active species.展开更多
Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron s...Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.展开更多
Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under...Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different [Snmg-oi],[snmg-VO], [SnMg-VO ] and mgsn,correspond to the components at 85 °C, 146 213 °C of the thermoluminescence curve.展开更多
The variations of chemical bonding characteristics in doped SnO,-base inert anodes with various dopants are studied using CNDO/2 quantum chemical calculations.A new model of conductivity is derived.which is checked wi...The variations of chemical bonding characteristics in doped SnO,-base inert anodes with various dopants are studied using CNDO/2 quantum chemical calculations.A new model of conductivity is derived.which is checked with literature data and our experimental results.Proper dopants can be selected with the model to reduce the resistivity of said electrode effectively.展开更多
To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 doe...To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 does not form a visible second phase in the doping mass fraction range of(0-2.0%).The average grain size,sintering density and real permeability gradually decrease with the increase of the MnO2 content.And the DC resistivity continuously increases with the increase of MnO2 content.The saturation magnetization(magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2,and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations.When the excitation frequency is less than 1 MHz,the power loss(Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size.However,when the excitation frequency exceeds 1 MHz,eddy current loss gradually becomes the predominant contribution to Pcv.And the sample with a higher resistivity favors a lower Pcv,except for the sample with 2.0% MnO2.The sample without additive has the best Pcv when worked at frequencies less than 1 MHz;and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz.展开更多
Porous Cu-doped SnO<sub>2</sub> thin films were synthesized by the sol-gel dip-coating method for enhancing methanol sensing performance. The effect of Cu doping concentration on the SnO<sub>2</su...Porous Cu-doped SnO<sub>2</sub> thin films were synthesized by the sol-gel dip-coating method for enhancing methanol sensing performance. The effect of Cu doping concentration on the SnO<sub>2</sub> sensibility was investigated. XRD data confirm that the fabricated SnO<sub>2</sub> films are polycrystalline with tetragonal rutile crystal structure. AFM and SEM micrographs confirmed the roughness and the porosity of SnO<sub>2</sub> surface, respectively. UV-Vis spectrum shows that SnO<sub>2</sub> thin films exhibit high transmittance in the visible region ~95%. The band gap (3.80 - 3.92 eV) and the optical thickness (893 - 131 nm) of prepared films were calculated from transmittance data. The sensing results demonstrate that SnO<sub>2</sub> films have a high sensitivity and a fast response to methanol. In particular, 3% Cu-SnO<sub>2</sub> films have a higher sensitivity (98%), faster response (10-<sup>2</sup> s) and shorter recovery time (18 s) than other films.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金financially supported by the Technion V.P.for Research Fund(No.2023320)。
文摘The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.
基金National Natural Science Foundation of China,Grant/Award Number:NSFC‐U1904215National Research Foundation of Korea,Grant/Award Number:2021R1A2C2012127。
文摘Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides.
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
文摘The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.
基金supported by the National Natural Science Foundation of China(Nos.11675051,51302079,51702138)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO2 molecules over Indium-doped SnP3 catalyst were systematically studied.Through doping with indium(In)atom,the energy barrier of CO2 protonation is reduced and OCHO*species could easily be generated.This is mainly due to the p orbital of In exhibits strong hybridization with the p orbital of O,indicating that there is a strong interaction between OCHO*and In-doped SnP3 catalyst.As a result,In-doped SnP3 possesses high-efficiency and high-selectivity for converting CO2 into HCOOH with a low limiting potential of-0.17 V.Our findings will offer theoretical guidance to CO2 electroreduction.
文摘The effects of additive SnO2 (0.4wt.%), with and without SiO2 (0.02wt.%) and/or CaO (0.04wt.%), on the microstructure and magnetic properties of Mn-Zn ferrites were reported. The results reveal that SnO2 on its own increases the initial permeability (μi) slightly, but SnO2 with SiO2 and/or CaO decreases the values of μi. However, ferrites with SnO2 additions have reduced power losses. The separate contributions of hysteresis loss and eddy current loss to the total power loss show that SnO2 (with or without SiO2 and/or CaO) doping increases the hysteresis loss slightly, but SnO2 doping alone reduces the eddy current loss significantly (~14%). The additions of SiO2 or CaO further decrease the eddy current loss, and by interaction of SnO2-CaO-SiO2, the eddy current loss is reduced by more than 20%. These magnetic and microstructural effects were discussed in terms of the additive-impurity interaction, the existence of grain boundary phases, and the effective bulk and grain boundary resistivities of the ferrites.
基金Project supported by the Science and Technology Program of Guangdong Province,China(Grant No.2015B010112002)the Science and Technology Project of Guangzhou City,China(Grant No.201607010250)
文摘The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga_2O_3 are in good agreement with experimental results. Si-and Sn-doped β-Ga_2O_3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga_2O_3 is larger than that of Sn-doped β-Ga_2O_3 because of the large bond length variation between Ga–O and Si–O. Si-and Sn-doped β-Ga_2O_3 have wider optical gaps than β-Ga_2O_3, due to the Burstein–Moss effect and the bandgap renormalization effect. Si-doped β-Ga_2O_3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga_2O_3, so Si is more suitable as a dopant of n-type β-Ga_2O_3, which can be applied in deep-UV photoelectric devices.
基金the financial support of Vietnam Academy of Science and Technology under project VAST01.04/18-19.
文摘We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.
基金the National Natural Science Foundation of China (20476070,20771080)Natural Science Foundation of Shanxi Province (20031024 ,20041020)
文摘The acid-proof anode Ti/SnO2+Mn2O3/PbO2 doped with Ce was prepared by thermal decomposition and electrodeposition combination technology, the effect of Ce on the morphology and structure of anode was also studied in this paper. The results obtained by cyclic voltammetry (CV), electrochemical impedance spectroscopic (EIS), X-ray Diffraction (XRD) and scanning electron microscopy (SEM) indicated that PbO2 crystal grains presented honeycomb structure were formed on the electrode surface by doping with Ce. The specific surface areas and catalytic active sites of the Ce-PbO2 doped electrode were increased and the catalytic activity was evidently greater than the undoped one. However, when Ce was doped into the intermediate layer (SnO2+Mn2O3), a more cracked surface structure formed, thus leading electrode deactivation by passivation of the Ti-substrate. So the anodic stability was decreased according to the accelerated life tests.
基金financially supported by National Natural Science Foundation of China (Grant No.51772213)973 Program (Grant No. 2013CB632701)
文摘In this paper, SnS_2 nanosheets arrays sandwiched by porous N-doped carbon and TiO_2(TiO_2@SnS_2@N-C) on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries. The as-obtained TiO_2@SnS_2@N-C composite delivers a remarkable capacity performance(840 mA h g^(-1) at a current density of 200 mA g^(-1)), excellent rate capability and long-cycling life stability(293 mA h g^(-1) at 1 A g^(-1) after 600 cycles). The excellent electrochemical performance can be attributed to the synergistic effect of each component of the unique hybrid structure, in which the SnS_2 nanosheets with open framworks offer high capacity, while the porous N-doped carbon nanoplates arrays on flexible carbon cloth are able to improve the conductivity and the TiO_2 passivation layer can keep the structure integrity of SnS_2 nanosheets.
基金Sponsored by the Science and Technology Commission of Shenzhen Municipality,P.R.China(Grant Nos.JCYJ20140417172417138 and ZDSYS20140508161622508).
文摘This study proved the significance of simulated sunlight irradiation response capability of Sn-F co-doped TiO_(2)/SiO_(2)(Sn-F-TiO_(2)/SiO_(2))photocatalysts,which were prepared by a simple sol-gel method and were evaluated by acrylonitrile degradation for photocatalytic activity.The synthesized catalysts were characterized by X-ray Diffraction(XRD),Scanning Electron Microscopy(SEM),Energy Dispersive Spectrometer(EDS),X-ray Photoelectron Spectroscopy(XPS),Brunauer-Emmett-Teller(BET),Ultraviolet-Visible Absorption spectroscopy(UV-Vis),and Photoluminescence Spectroscopy(PL).UV-Visible spectroscopy demonstrated that Sn doping caused remarkable red shift in TiO_(2),which significantly increased the absorption efficiency of the catalysts.The XPS results showed that Sn was successfully doped into the TiO_(2) lattice.The photocatalytic degradation of acrylonitrile indicated that the Sn-F-TiO_(2)/SiO_(2) photocatalysts exhibited excellent photocatalytic activity when being annealed at 550℃for 2 h.The degradation rate of acrylonitrile reached 67.7%after irradiation under simulated sunlight for 6 min,and the hole was the most important active species.
基金supported by the National Natural Science Foundation of China (Grant No. 62204203)the Shaanxi Natural Science Basic Research Program (Grant No. 2022JQ-701)。
文摘Sn doping is an effective way to improve the response rate of Ga_(2)O_(3) film based solar-blind detectors. In this paper,Sn-doped Ga_(2)O_(3) films were prepared on a sapphire substrate by radio frequency magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and ultraviolet visible spectroscopy, and the effect of annealing atmosphere on the properties of films was studied. The Ga_(2)O_(3) films changed from amorphous to β-Ga_(2)O_(3) after annealing at 900 °C. The films were composed of micro crystalline particles with a diameter of about 5–20 nm.The β-Ga_(2)O_(3) had high transmittance for wavelengths above 300 nm, and obvious absorption for solar-blind signals at 200–280 nm.The metal semiconductor metal type solar-blind detectors were prepared. The detector based on Sn-doped β-Ga_(2)O_(3) thin film annealed in N_2 has the best response performance to 254 nm light. The photo-current is 10 μA at 20 V, the dark-current is 5.76 pA,the photo dark current ratio is 1.7 × 10~6, the response rate is 12.47 A/W, the external quantum efficiency is 6.09 × 10~3%, the specific detection rate is 2.61 × 10~(12) Jones, the response time and recovery time are 378 and 90 ms, respectively.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 502041032)the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2011-125)the National Innovation Experiment Program for University Students, China (Grant No. 101073005)
文摘Mg2Sn04 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different [Snmg-oi],[snmg-VO], [SnMg-VO ] and mgsn,correspond to the components at 85 °C, 146 213 °C of the thermoluminescence curve.
文摘The variations of chemical bonding characteristics in doped SnO,-base inert anodes with various dopants are studied using CNDO/2 quantum chemical calculations.A new model of conductivity is derived.which is checked with literature data and our experimental results.Proper dopants can be selected with the model to reduce the resistivity of said electrode effectively.
基金Projects(50702011,60721001)supported by the National Natural Science Foundation of China
文摘To improve the performance of Ni-Zn ferrites for power field use,the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy.The results show that MnO2 does not form a visible second phase in the doping mass fraction range of(0-2.0%).The average grain size,sintering density and real permeability gradually decrease with the increase of the MnO2 content.And the DC resistivity continuously increases with the increase of MnO2 content.The saturation magnetization(magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2,and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations.When the excitation frequency is less than 1 MHz,the power loss(Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size.However,when the excitation frequency exceeds 1 MHz,eddy current loss gradually becomes the predominant contribution to Pcv.And the sample with a higher resistivity favors a lower Pcv,except for the sample with 2.0% MnO2.The sample without additive has the best Pcv when worked at frequencies less than 1 MHz;and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz.
文摘Porous Cu-doped SnO<sub>2</sub> thin films were synthesized by the sol-gel dip-coating method for enhancing methanol sensing performance. The effect of Cu doping concentration on the SnO<sub>2</sub> sensibility was investigated. XRD data confirm that the fabricated SnO<sub>2</sub> films are polycrystalline with tetragonal rutile crystal structure. AFM and SEM micrographs confirmed the roughness and the porosity of SnO<sub>2</sub> surface, respectively. UV-Vis spectrum shows that SnO<sub>2</sub> thin films exhibit high transmittance in the visible region ~95%. The band gap (3.80 - 3.92 eV) and the optical thickness (893 - 131 nm) of prepared films were calculated from transmittance data. The sensing results demonstrate that SnO<sub>2</sub> films have a high sensitivity and a fast response to methanol. In particular, 3% Cu-SnO<sub>2</sub> films have a higher sensitivity (98%), faster response (10-<sup>2</sup> s) and shorter recovery time (18 s) than other films.