期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Conduction Properties and Scattering Mechanisms in F-doped Textured Transparent Conducting SnO_2 Films Deposited by APCVD 被引量:1
1
作者 Deheng ZHANG(Dept. of Physics, Shandong University, Jinan 250100, China)Honglei MA(Institute of Optoelectronic Materials and Devices, Shandong University, Jinan 250100, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第1期50-56,共7页
Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2... Transparent conducting F-doped texture SnO2 films with resistivity as low as 5× 10-4 Ω ·cm,with carrier concentrations between 3.5 × 1020 and 7× 1020 cm-3 and Hall mobilities from 15.7 to 20.1 cm2/(V/s) have been prepared by atmosphere pressure chemical vapour deposition (APCVD). These polycrystalline films possess a variable preferred orientation, the polycrystallite sizes and orientations vary with substrate temperature. The substrate temperature and fluorine flow rate dependence of conductivity, Hall mobility and carrier conentration fOr the resultingfilms have been obtained. The temperature dependence of the mobiity and carrier concentrationhave been measured over a temperature range 16~400 K. A systematically theoretical analysis on scattering mechanisms for the highly conductive SnO2 films has been given. Both theoretical analysis and experimental results indicate that for these degenerate, polycrystalline SnO2 :F films in the low temperature range (below 100 K), ionized impurity scattering is main scattering mechanism. However, when the temperature is higher than 100 K, the lattice vibration scattering becomes dominant. The grain boundary scattering makes a small contribution to limit the mobility of the films. 展开更多
关键词 SNO cm Conduction Properties and Scattering Mechanisms in F-doped Textured Transparent Conducting sno2 films Deposited by APCVD
下载PDF
Preparation and Characterization of CeO_2-TiO_2/SnO_2:Sb Films Deposited on Glass Substrates by R.F.Sputtering 被引量:6
2
作者 ZHAO Qingnan DONG Yuhong NI Jiamiao WANG Peng ZHAO Xiujian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期443-447,共5页
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets wit... CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on. 展开更多
关键词 coating glass CeO2-TiO/sno2:Sb double thin films absorbing UV IR reflection R.F. sputterin
下载PDF
Optimization of Gas Sensing Performance of Nanocrystalline SnO_2 Thin Films Synthesized by Magnetron Sputtering 被引量:1
3
作者 N.Panahi M.T.Hosseinnejad +1 位作者 M.Shirazi M.Ghoranneviss 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期99-103,共5页
Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ ... Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures. 展开更多
关键词 of on as it or in Optimization of Gas Sensing Performance of Nanocrystalline sno2 Thin films Synthesized by Magnetron Sputtering SNO by
下载PDF
Sheet Resistance and Gas-Sensing Properties of Tin Oxide Thin Films by Plasma Enhanced Chemical Vapor Deposition 被引量:1
4
作者 刘彭义 陈俊芳 孙汪典 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第2期2259-2264,共6页
Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-... Tin oxide (SnO2) thin films are prepared at different temperatures by plasmaenhanced chemical vapor deposition (PECVD). The structural characterizations of the films are investigated by various analysis techniques. X-ray diffraction patterns (XRD) show that the phase of SnO2 films are different at different deposition temperatures. The sheet resistance of the films decreases with increase of deposition temperature. X-ray photoelectron spectroscopy (XPS) shows that the SnO2 thin film is non-stoichiometric. The sheet resistance increases with increase in oxygen flow. Sb-doped SnO2 thin films are more sensitive to alcohol than carbon monoxide, and its maximum sensitivity is about 220%. 展开更多
关键词 sno2 thin film PECVD sheet resistance gas sensibility
下载PDF
Electrodeposition of SnO_2 nanocrystalline thin film using butyl-rhodamine B as a structure-directing agent 被引量:1
5
作者 Jing Yang Shou Li Bai +3 位作者 Rui Xian Luo Ai Fan Chen Yuan Lin Jing Bo Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第12期1505-1508,共4页
Porous SnO2 nanocrystalline thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl-rhodamine B(BRhB) at 70℃.BRhB with subs... Porous SnO2 nanocrystalline thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl-rhodamine B(BRhB) at 70℃.BRhB with substitute of amidocyanogen can be dissolved in the acid deposition solution,where HCl was added to suppress hydrolysis of SnCl2.So it was used as a structure-directing agent to promote the crystal growth of SnO_2.The formed porous morphology and tetragonal rutile crystalline structure of the electrodeposited thin films were controlled by the addition of BRhB with different amounts. 展开更多
关键词 Nanocrystalline sno2 thin film ELECTRODEPOSITION Butyl-rhodamine B Structure-directing agent
下载PDF
Photoluminescence from Er^(3+) ion and SnO_2 nanocrystal co-doped silica thin films
6
作者 张晓伟 林涛 +4 位作者 江小帆 徐骏 刘建峰 徐岭 陈坤基 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第9期72-75,共4页
Er3+ ions embedded in silica thin films co-doped by SnO2 nanocrystals are fabricated by sol-gel and spin coating methods. Uniformly distributed 4-am SnO2 nanocrystals are fabricated, and the nanocrystals showed tetra... Er3+ ions embedded in silica thin films co-doped by SnO2 nanocrystals are fabricated by sol-gel and spin coating methods. Uniformly distributed 4-am SnO2 nanocrystals are fabricated, and the nanocrystals showed tetragonal rutile crystalline structures confirmed by transmission electron microscope and X-ray diffraction measurements. A strong characteristic emission located at 1.54 〉m from the Era+ ions is iden- tified, and the influences of Sn doping concentrations on photoluminescence properties are systematically evaluated. The emission at 1.54 #m from Era+ ions is enhanced by more than three orders of magnitude, which can be attributed to the effective energy transfer from the defect states of SnO2 nanocrystals to nearby Er3+ ions, as revealed by the selective excitation experiments. 展开更多
关键词 SNO ion and sno2 nanocrystal co-doped silica thin films Photoluminescence from Er
原文传递
Electronic structure of the doped SnO_2 被引量:1
7
作者 刘威 曹立礼 《Science China Chemistry》 SCIE EI CAS 2001年第1期63-67,共5页
SnO2 doped with La, Ce, Sm, Zn, Ca, Al and Sb was prepared by sol-gel technique and characterized by TEM, BET, XPS and XAES. The effect of the dopants on the grain sizes of SnO2 was described and especially the effect... SnO2 doped with La, Ce, Sm, Zn, Ca, Al and Sb was prepared by sol-gel technique and characterized by TEM, BET, XPS and XAES. The effect of the dopants on the grain sizes of SnO2 was described and especially the effect of dopants on the distribution of the electronic state density (DESD) of Sn4d orbital was studied deeply by using X-ray-induced Auger electron spectroscopy (XAES). It was observed that the dopants could influence not only the grain sizes of SnO2 but also electronic structure of SnO2, as well as the stability of the doped SnO2 samples. The experiment results indicated that the structure and stability of SnO2 film could be improved by the chemical modification of the dopants. 展开更多
关键词 sno2 thin film electronic structure XPS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部