Abnormal refraction and reflection refers to the phenomenon in which light does not follow its traditional laws of propagation and instead is subject to refraction and reflection at abnormal angles that satisfy a gene...Abnormal refraction and reflection refers to the phenomenon in which light does not follow its traditional laws of propagation and instead is subject to refraction and reflection at abnormal angles that satisfy a generalization of Snell’s law.Metasurfaces can realize this phenomenon through appropriate selection of materials and structural design,and they have a wide range of potential applications in the military,communications,scientific,and biomedical fields.This paper summarizes the current state of research on abnormal refractive and reflective metasurfaces and their application scenarios.It discusses types of abnormal refractive and reflective metasurfaces based on their tuning modes(active and passive),their applications in different wavelength bands,and their future development.The technical obstacles that arise with existing metasurface technology are summarized,and prospects for future development and applications of abnormal refractive and reflective metasurfaces are discussed.展开更多
In this paper I compare the Abraham and the Minkowski forms for the momentum pertaining to an electromagnetic wave inside a dielectric or a magnetic material. The discussion is based on a careful treatment of the surf...In this paper I compare the Abraham and the Minkowski forms for the momentum pertaining to an electromagnetic wave inside a dielectric or a magnetic material. The discussion is based on a careful treatment of the surface charges and currents and of the forces acting on them. While in the dielectric case the Abraham momentum is certainly more appealing from the physical point of view, for a magnetic material it suggests an interpretation in terms of magnetic charges and related magnetic currents. The Minkowski momentum for magnetic non conducting materials, on the contrary, has a natural interpretation in terms of an amperian model, in which the dynamics is determined by the Lorentz force acting on bulk and surface electric currents.展开更多
In this paper, we have calculated the angle of refraction that light travels approaching to the strong gravitational field like a black hole by combining the general relativity and the classical Snell’s law, assuming...In this paper, we have calculated the angle of refraction that light travels approaching to the strong gravitational field like a black hole by combining the general relativity and the classical Snell’s law, assuming that the gravitational field can act as a non-vacuum filled with medium of some coefficients. We have found that the value of refracted angle exactly coincides with the value from the Einstein’s relativity theory in a weak gravitational field. From this optical interpretation of the traveling of light near a black hole, we have suggested that there might have the reflection phenomenon and investigated that the total reflection occurs at the surface of a black hole. Regardless this might cause controversy, we can explain the recent observation that light reflects from a black hole.展开更多
基金This work was supported by the Chinese Academy of Sciences Strategic Pioneering Science and Technology Special Project(XDA28050200)the Jilin Province Science and Technology Development Program in China(20200403062SF,20200401141GX,20210201023GX,20210201140GX,and 20210203059SF)+1 种基金the Chinese Academy of Sciences Research Instrumentation Development Project(YJKYYQ20200048)the Science and Technology Innovation Platform of Jilin Province(20210502016ZP).
文摘Abnormal refraction and reflection refers to the phenomenon in which light does not follow its traditional laws of propagation and instead is subject to refraction and reflection at abnormal angles that satisfy a generalization of Snell’s law.Metasurfaces can realize this phenomenon through appropriate selection of materials and structural design,and they have a wide range of potential applications in the military,communications,scientific,and biomedical fields.This paper summarizes the current state of research on abnormal refractive and reflective metasurfaces and their application scenarios.It discusses types of abnormal refractive and reflective metasurfaces based on their tuning modes(active and passive),their applications in different wavelength bands,and their future development.The technical obstacles that arise with existing metasurface technology are summarized,and prospects for future development and applications of abnormal refractive and reflective metasurfaces are discussed.
文摘In this paper I compare the Abraham and the Minkowski forms for the momentum pertaining to an electromagnetic wave inside a dielectric or a magnetic material. The discussion is based on a careful treatment of the surface charges and currents and of the forces acting on them. While in the dielectric case the Abraham momentum is certainly more appealing from the physical point of view, for a magnetic material it suggests an interpretation in terms of magnetic charges and related magnetic currents. The Minkowski momentum for magnetic non conducting materials, on the contrary, has a natural interpretation in terms of an amperian model, in which the dynamics is determined by the Lorentz force acting on bulk and surface electric currents.
文摘In this paper, we have calculated the angle of refraction that light travels approaching to the strong gravitational field like a black hole by combining the general relativity and the classical Snell’s law, assuming that the gravitational field can act as a non-vacuum filled with medium of some coefficients. We have found that the value of refracted angle exactly coincides with the value from the Einstein’s relativity theory in a weak gravitational field. From this optical interpretation of the traveling of light near a black hole, we have suggested that there might have the reflection phenomenon and investigated that the total reflection occurs at the surface of a black hole. Regardless this might cause controversy, we can explain the recent observation that light reflects from a black hole.