Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-b...Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.展开更多
Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow ...Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow village,and ice and snow agritainment.The investigation found that there are still significant problems in homogenization,scenic area infrastructure,and government regulation in snow village.Targeted solutions are proposed from four aspects:tapping internal advantages,strengthening top-level design and infrastructure construction,promoting tourism industry upgrading,and collaborating to innovate the ice and snow tourism supply chain,in order to further promote the economic development of snow village.展开更多
In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow...In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow Mountain Reserve through literature collation and research. 1) The Hengduan Mountain Plate of Haba Snow Mountain is affected by the high altitude temperate monsoon and is sensitive to climate change. There has been continuous glacier melting and snow line fluctuations. Although there is no forest line movement, the vegetation at the junction of the forest line has increased. 2) Human activities in the Haba Snow Mountain Reserve have shown an active trend, and the Biomass in various ecosystems in the region is inversely correlated. 3) Climate change will have a negative impact on landscape attraction and tourism safety in snowy mountain areas. 4) Haba Snow Mountain Reserve needs more perfect biological species statistical research and dynamic vegetation research to support the establishment of a perfect ecological protection strategy and ecological early warning in the region. 5) As the frequency of tourist activities in the Haba Protected Area increases, corresponding environmental protection signage, garbage cleaning methods, and tourist education have not been synchronizedly improved.展开更多
Based on the data of national observation stations of CMISS system,artificial encrypted observation data of snow depth,ERA5 reanalysis data,the snowfall process in Ulanqab City from March 17 to 19,2022 was analyzed.It...Based on the data of national observation stations of CMISS system,artificial encrypted observation data of snow depth,ERA5 reanalysis data,the snowfall process in Ulanqab City from March 17 to 19,2022 was analyzed.It is found that the influencing system of the snowfall process was upper-air trough combined with ground inverted trough.Snowfall was not proportional to snow depth,and the relationship between the maximum snow depth and total snowfall varied in different value intervals.A large intensity of snowfall was a necessary condition for the formation of abundant accumulated snow when ground temperature was higher than 0℃.After the formation of accumulated snow,ground temperature changed less,and it was easy to produce accumulated snow as ground temperature was lower.The lower the temperature,the more conducive to the generation of accumulated snow.展开更多
Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western ...Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.展开更多
To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of sn...To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of snow particle diameter and train speed on the ensuing dynamics.It is shown that considering snow particle rotational motion causes significant deviation in the particle trajectories with respect to non-rotating particles.Such a deviation increases with larger snow particle diameters and higher train speeds.The snow accumulation on the overall surface of the bogie increases,and the amount of snow on the vibration reduction device varies greatly.In certain conditions,the amount of accumulated snow can increase by several orders of magnitudes.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,pote...Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,potentially threatening the structure and function of natural ecosystems.MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms.However,little attention has been given to the possible harm associated with MPs deposited in snow,particularly in the context of global climate warming.MPs collected from surface snow in the Inner Mongolia Plateau,China,were used for quantitative analysis and identification.The results showed that MPs were easily detected,and the related concentration was approximately(68±10)–(199±22)MPsL1 in snow samples.Fibers were the most common morphology,the polymer composition was largely varied,and the abundance and composition of MPs were linked to human activity to a great extent.High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics,indicating a considerable difference in microbial functional diversity.MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow.In addition,the results showed that functional living areas(e.g.,landfills and suburban areas)in cities play an important role in the properties of MPs.For instance,the highest abundance of MPs was found in thermal power plants,whereas the abundance of polymers per sample was significantly lower in the suburban area.The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.展开更多
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant...The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.展开更多
An average of eight snowfall events occur each year in the eastern Lesotho Highlands.These snowfall events are typically associated with cut-off low(CoLs)systems and mid-latitude cyclones.However,the moisture sources ...An average of eight snowfall events occur each year in the eastern Lesotho Highlands.These snowfall events are typically associated with cut-off low(CoLs)systems and mid-latitude cyclones.However,the moisture sources of the snowfall are unclassified and unclear.The Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,an air mass back trajectory model,has been used to evaluate moisture source waters locally in southern Africa and internationally in China and Europe.This study uses HYSPLIT to determine the source moisture of snow in Lesotho.A list of all 82 snowfall events in Lesotho spanning 2017 to 2022 was compiled using the Snow Report SA Instagram page,including the date and location of snowfall.A 72-hour back trajectory for each snowfall event was initiated for both Afriski and the whole of Lesotho.This amounts to models of moisture source trajectories for 28 and 82 snowfall days,respectively.These air mass pathways are classified according to their frequency per snowfall event,per month in the snow season,per year and for the full period.From this,associated moisture source regions and dominant air mass trajectories were identified.This study reports that the air mass trajectories associated with Afriski and Lesotho as a whole are very similar.The most common pathway of air mass trajectories transporting snow-bearing moisture to Lesotho was an inland trajectory from the northern regions of southern Africa.This pathway makes up 16.6%of all trajectories reported and is associated with the Angola Low,the Congo Air Boundary and the St.Helena High Pressure.展开更多
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate...The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.展开更多
Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studie...Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studies have focused on constructing different climate suitability indicators for ice and snow tourism to evaluate individual regions,lacking horizontal comparative studies across multiple regions.This study aims to enrich the connotation of climate suitability for ice and snow sports,establish an evaluation model based on snowfall amount,temperature,and wind speed,and use daily meteorological data from 1991 to 2021 to horizontally compare the climate suitability for ice and snow sports in major ski tourism destinations in China.This study boasts four major findings:1)the average ice and snow sports climate index of each region decreases over time,and the overall suitability of the climate for ice and snow sports is reducing;2)northern Xinjiang exhibits the most evident regional differentiation from‘very suitable’to‘generally suitable’;3)the spatial zoning of climate suitability for ice and snow sports exhibits heterogeneity,as northern Xinjiang is divided into two‘suitable and above’zones with rotating empirical orthogonal function(REOF).Correspondingly,the four provinces of Hebei,Heilongjiang,Jilin,and Liaoning are divided into three‘generally suitable and above’zones;4)snowfall amount is the main factor affecting the climate suitability of ice and snow sports in the major ski tourist destinations in China.展开更多
The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central ...The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.展开更多
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ...The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.展开更多
Unprecedented modern rates of warming are expected to advance alpine treelines to higher elevations,but global evidence suggests that current treeline dynamics are influenced by a variety of factors.Seasonal snow cove...Unprecedented modern rates of warming are expected to advance alpine treelines to higher elevations,but global evidence suggests that current treeline dynamics are influenced by a variety of factors.Seasonal snow cover has an essential impact on tree recruitment and growth in alpine regions,which may in turn influence current treeline elevation;however,little research has been conducted on its role in regional treeline formation.Based on 11,804treeline locations in the eastern Himalayas,we extracted elevation,climate,and topographic data for treeline and snowline.Specifically,we used linear and structural equation modelling to assess the relationship between these environmental factors and treeline elevation,and the climate-snow-treeline interaction mechanism.The results showed that the treeline elevation increased with summer temperature and permanent or seasonal snowline elevation,but decreased with snow cover days and spring temperature at the treeline positions(P<0.001).Importantly,spring snowline elevation(33.4%)and seasonal snow cover days(21.1%)contributed the most to treeline elevation,outperforming the permanent snowline,temperature,precipitation,and light.Our results support the assertion that the temperature-moisture interaction affects treeline elevation in the eastern Himalayas,but we also found that the effects were strongly mediated by seasonal snow cover patterns.The increasing tendency of snow cover governed by climate humidification observed in the eastern Himalayas,is likely to limit future treeline advancement and may even cause treeline decline due to the mortality of the remaining old trees.Together,our findings highlight the role of seasonal snow cover patterns in determining treeline elevation in the eastern Himalayas,which should be considered when assessing the potential for treeline ascent in snow-mediated alpine systems elsewhere.展开更多
Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo chan...Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo changes.Here we presented refractory BC(rBC)concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017.The results revealed that the average rBC concentrations were 5.77 and2.82 ng g-1for the surface snow and sub-surface snow,which were relatively higher in the melting season(April)than that in winter(November-January).The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm,which was typically smaller than that in the atmosphere(about 200 nm for urban atmosphere).However,there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter.While during the melting season,the median mass size of rBC in sub-surface snow was similar to that in surface snow.Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow(70%-85%).This study will promote our understanding on BC size distributions in snow,and highlight the possible impact of BC size on climate effect.展开更多
This study reveals the complex nature of the connection between Eurasian snow and the following summer season's monsoon rainfall by using four different indicators of snow conditions and correlating each of them to s...This study reveals the complex nature of the connection between Eurasian snow and the following summer season's monsoon rainfall by using four different indicators of snow conditions and correlating each of them to summer monsoon rainfall. Using 46 years of historical records of mean winter snow depth, maximum snow depth, and snow starting dates, and 27 years of snow area coverage from remote sensing observations over Eurasia, the authors found diverse correlation patterns between snow conditions and the following warm season's rainfall over South and Southeast Asia. Some of the results contradict the well-known inverse relationships between snow and the summer monsoon. This study provides an easy comparison of results in that it shows the connections between Eurasian snow and monsoon rainfall by using different Eurasian snow indicators based on the best available historical records without discrimination of regional variations in snow conditions.展开更多
Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism c...Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.展开更多
Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/...Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/cm3 over China as a whole, re- spectively. On average, they were all the smallest in the Qinghai-Tibetan Plateau (QTP), and were greater in northwestern China (NW). Spatially, the regions with greater annual mean snow depth and SWE were located in northeastern China including eastern Inner Mongolia (NE), northern Xinjiang municipality, and a small fraction of southwestern QTP. Annual mean snow density was below 0.14 g/cm3 in most of China, and was higher in the QTP, NE, and NW. The trend analyses revealed that both annual mean snow depth and SWE presented increasing trends in NE, NW, the QTP, and China as a whole during 1957-2009. Although the trend in China as a whole was not significant, the amplitude of variation became increasingly greater in the second half of the 20th century. Spatially, the statistically significant (95%-level) positive trends for annual mean snow depth were located in western and northem NE, northwestem Xinjiang municipality, and northeastem QTP. The distribution of positive and negative trends for annu- al mean SWE were similar to that of snow depth in position, but not in range. The range with positive trends of SWE was not as large as that of snow depth, but the range with negative trends was larger.展开更多
Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their i...Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their inter-annual spatial and temporal variability.Then,the relationships between each empirical orthogonal function(EOF)mode and the typhoon count,typhoon landfall count,track pattern,and the Qinghai-Xizang Plateau snow cover(QXPSC)were examined,and the possible physical mechanisms implied by the statistical relationship were explored.The results show the QXPSC significantly affected the surface-atmosphere heat exchange through snow cover(SC)level,then changed the East Asian summer monsoon regional circulation pattern,influenced the subtropical high-pressure system strength and location,and ultimately affected the WNP TCs track patterns and thus changed their landfall locations.展开更多
基金supported by the Scientific Research Project(BAP)of Eskişehir Technical University,project number 1610F676.
文摘Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.
文摘Based on field visit and interview,the current situation of snow village in China is summarized from four aspects:core scenic spots in snow village,skiing industry in snow village,film and television industry in snow village,and ice and snow agritainment.The investigation found that there are still significant problems in homogenization,scenic area infrastructure,and government regulation in snow village.Targeted solutions are proposed from four aspects:tapping internal advantages,strengthening top-level design and infrastructure construction,promoting tourism industry upgrading,and collaborating to innovate the ice and snow tourism supply chain,in order to further promote the economic development of snow village.
文摘In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow Mountain Reserve through literature collation and research. 1) The Hengduan Mountain Plate of Haba Snow Mountain is affected by the high altitude temperate monsoon and is sensitive to climate change. There has been continuous glacier melting and snow line fluctuations. Although there is no forest line movement, the vegetation at the junction of the forest line has increased. 2) Human activities in the Haba Snow Mountain Reserve have shown an active trend, and the Biomass in various ecosystems in the region is inversely correlated. 3) Climate change will have a negative impact on landscape attraction and tourism safety in snowy mountain areas. 4) Haba Snow Mountain Reserve needs more perfect biological species statistical research and dynamic vegetation research to support the establishment of a perfect ecological protection strategy and ecological early warning in the region. 5) As the frequency of tourist activities in the Haba Protected Area increases, corresponding environmental protection signage, garbage cleaning methods, and tourist education have not been synchronizedly improved.
文摘Based on the data of national observation stations of CMISS system,artificial encrypted observation data of snow depth,ERA5 reanalysis data,the snowfall process in Ulanqab City from March 17 to 19,2022 was analyzed.It is found that the influencing system of the snowfall process was upper-air trough combined with ground inverted trough.Snowfall was not proportional to snow depth,and the relationship between the maximum snow depth and total snowfall varied in different value intervals.A large intensity of snowfall was a necessary condition for the formation of abundant accumulated snow when ground temperature was higher than 0℃.After the formation of accumulated snow,ground temperature changed less,and it was easy to produce accumulated snow as ground temperature was lower.The lower the temperature,the more conducive to the generation of accumulated snow.
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28110502)Science and Technology Development Plan Project of Jilin Province(No.20220202035NC)+1 种基金National Natural Science Foundation of China(No.41871248)Changchun Science and Technology Development Plan Project(No.21ZY12)。
文摘Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April.
基金funded by The National Natural Science Foundation of China(Grant No.12172308)the Provincial Natural Science Foundation of Hunan(Grant No.2023JJ40260).
文摘To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains,an Euler‒Lagrange numerical approach is adopted.The study examines the effects of snow particle diameter and train speed on the ensuing dynamics.It is shown that considering snow particle rotational motion causes significant deviation in the particle trajectories with respect to non-rotating particles.Such a deviation increases with larger snow particle diameters and higher train speeds.The snow accumulation on the overall surface of the bogie increases,and the amount of snow on the vibration reduction device varies greatly.In certain conditions,the amount of accumulated snow can increase by several orders of magnitudes.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
基金supported by the funds for the National Natural Science Foundation of China(52070183)the International Cooper ation and Exchange of the National Natural Science Foundation of China(51820105011)the Program of the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019044).
文摘Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,potentially threatening the structure and function of natural ecosystems.MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms.However,little attention has been given to the possible harm associated with MPs deposited in snow,particularly in the context of global climate warming.MPs collected from surface snow in the Inner Mongolia Plateau,China,were used for quantitative analysis and identification.The results showed that MPs were easily detected,and the related concentration was approximately(68±10)–(199±22)MPsL1 in snow samples.Fibers were the most common morphology,the polymer composition was largely varied,and the abundance and composition of MPs were linked to human activity to a great extent.High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics,indicating a considerable difference in microbial functional diversity.MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow.In addition,the results showed that functional living areas(e.g.,landfills and suburban areas)in cities play an important role in the properties of MPs.For instance,the highest abundance of MPs was found in thermal power plants,whereas the abundance of polymers per sample was significantly lower in the suburban area.The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.
基金supported by the National Key Research and Development Program(Grant nos.2022YFC2807203,2022YFB2302701).
文摘The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.
基金the University of the Witwatersrand Friedel Sellschop Grantthe WitsUCL strategic partnership grant
文摘An average of eight snowfall events occur each year in the eastern Lesotho Highlands.These snowfall events are typically associated with cut-off low(CoLs)systems and mid-latitude cyclones.However,the moisture sources of the snowfall are unclassified and unclear.The Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,an air mass back trajectory model,has been used to evaluate moisture source waters locally in southern Africa and internationally in China and Europe.This study uses HYSPLIT to determine the source moisture of snow in Lesotho.A list of all 82 snowfall events in Lesotho spanning 2017 to 2022 was compiled using the Snow Report SA Instagram page,including the date and location of snowfall.A 72-hour back trajectory for each snowfall event was initiated for both Afriski and the whole of Lesotho.This amounts to models of moisture source trajectories for 28 and 82 snowfall days,respectively.These air mass pathways are classified according to their frequency per snowfall event,per month in the snow season,per year and for the full period.From this,associated moisture source regions and dominant air mass trajectories were identified.This study reports that the air mass trajectories associated with Afriski and Lesotho as a whole are very similar.The most common pathway of air mass trajectories transporting snow-bearing moisture to Lesotho was an inland trajectory from the northern regions of southern Africa.This pathway makes up 16.6%of all trajectories reported and is associated with the Angola Low,the Congo Air Boundary and the St.Helena High Pressure.
基金This research is funded by the National Natural Science Foundation of China(Grant No.42075050)Fundamental Research Funds for the Central Universities(Grant No.K20220232).
文摘The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.
基金Under the auspices of the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C372)National Natural Science Foundation of China(No.42261041)+1 种基金Major Key Programs of Philosophy and Social Sciences in Xinjiang University(No.22APY016)Xinjiang Uygur Autonomous Region Federation of Social Sciences Project Key Project(No.2023ZJFLW10)。
文摘Ice and snow tourism in China has grown significantly since the country successfully hosted the Beijing Winter Olympics.Climatic conditions profoundly impact the development of ice and snow tourism;however,most studies have focused on constructing different climate suitability indicators for ice and snow tourism to evaluate individual regions,lacking horizontal comparative studies across multiple regions.This study aims to enrich the connotation of climate suitability for ice and snow sports,establish an evaluation model based on snowfall amount,temperature,and wind speed,and use daily meteorological data from 1991 to 2021 to horizontally compare the climate suitability for ice and snow sports in major ski tourism destinations in China.This study boasts four major findings:1)the average ice and snow sports climate index of each region decreases over time,and the overall suitability of the climate for ice and snow sports is reducing;2)northern Xinjiang exhibits the most evident regional differentiation from‘very suitable’to‘generally suitable’;3)the spatial zoning of climate suitability for ice and snow sports exhibits heterogeneity,as northern Xinjiang is divided into two‘suitable and above’zones with rotating empirical orthogonal function(REOF).Correspondingly,the four provinces of Hebei,Heilongjiang,Jilin,and Liaoning are divided into three‘generally suitable and above’zones;4)snowfall amount is the main factor affecting the climate suitability of ice and snow sports in the major ski tourist destinations in China.
文摘The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.
基金financially supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program of China(No.2019QZKK0301)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA26010101)the National Natural Science Foundation of China(Nos.31860123,31560153)。
文摘Unprecedented modern rates of warming are expected to advance alpine treelines to higher elevations,but global evidence suggests that current treeline dynamics are influenced by a variety of factors.Seasonal snow cover has an essential impact on tree recruitment and growth in alpine regions,which may in turn influence current treeline elevation;however,little research has been conducted on its role in regional treeline formation.Based on 11,804treeline locations in the eastern Himalayas,we extracted elevation,climate,and topographic data for treeline and snowline.Specifically,we used linear and structural equation modelling to assess the relationship between these environmental factors and treeline elevation,and the climate-snow-treeline interaction mechanism.The results showed that the treeline elevation increased with summer temperature and permanent or seasonal snowline elevation,but decreased with snow cover days and spring temperature at the treeline positions(P<0.001).Importantly,spring snowline elevation(33.4%)and seasonal snow cover days(21.1%)contributed the most to treeline elevation,outperforming the permanent snowline,temperature,precipitation,and light.Our results support the assertion that the temperature-moisture interaction affects treeline elevation in the eastern Himalayas,but we also found that the effects were strongly mediated by seasonal snow cover patterns.The increasing tendency of snow cover governed by climate humidification observed in the eastern Himalayas,is likely to limit future treeline advancement and may even cause treeline decline due to the mortality of the remaining old trees.Together,our findings highlight the role of seasonal snow cover patterns in determining treeline elevation in the eastern Himalayas,which should be considered when assessing the potential for treeline ascent in snow-mediated alpine systems elsewhere.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0605)the National Science Foundation of China(42271132)+1 种基金Longyuan Youth Innovative Program of Gansu Provincethe Fundamental Research Funds for the Central Universities(lzujbky-2021-74)。
文摘Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo changes.Here we presented refractory BC(rBC)concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017.The results revealed that the average rBC concentrations were 5.77 and2.82 ng g-1for the surface snow and sub-surface snow,which were relatively higher in the melting season(April)than that in winter(November-January).The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm,which was typically smaller than that in the atmosphere(about 200 nm for urban atmosphere).However,there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter.While during the melting season,the median mass size of rBC in sub-surface snow was similar to that in surface snow.Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow(70%-85%).This study will promote our understanding on BC size distributions in snow,and highlight the possible impact of BC size on climate effect.
文摘This study reveals the complex nature of the connection between Eurasian snow and the following summer season's monsoon rainfall by using four different indicators of snow conditions and correlating each of them to summer monsoon rainfall. Using 46 years of historical records of mean winter snow depth, maximum snow depth, and snow starting dates, and 27 years of snow area coverage from remote sensing observations over Eurasia, the authors found diverse correlation patterns between snow conditions and the following warm season's rainfall over South and Southeast Asia. Some of the results contradict the well-known inverse relationships between snow and the summer monsoon. This study provides an easy comparison of results in that it shows the connections between Eurasian snow and monsoon rainfall by using different Eurasian snow indicators based on the best available historical records without discrimination of regional variations in snow conditions.
基金financially supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 131B62KYSB20180003)the Frontier Science Key Project of CAS (Grant No. QYZDY-SSW-DQC021)the State Key Laboratory of Cryospheric Science (Grant No. SKLCSZZ-2022)
文摘Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.
基金supported by the National Natural Science Foundation of China(40901045)the China Meteorological Administration's special funds for scientific research on public causes(GYHY200906017)
文摘Using observed snow cover dam from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957-2009 were 0.49 cm, 0.7 ram, and 0.14 g/cm3 over China as a whole, re- spectively. On average, they were all the smallest in the Qinghai-Tibetan Plateau (QTP), and were greater in northwestern China (NW). Spatially, the regions with greater annual mean snow depth and SWE were located in northeastern China including eastern Inner Mongolia (NE), northern Xinjiang municipality, and a small fraction of southwestern QTP. Annual mean snow density was below 0.14 g/cm3 in most of China, and was higher in the QTP, NE, and NW. The trend analyses revealed that both annual mean snow depth and SWE presented increasing trends in NE, NW, the QTP, and China as a whole during 1957-2009. Although the trend in China as a whole was not significant, the amplitude of variation became increasingly greater in the second half of the 20th century. Spatially, the statistically significant (95%-level) positive trends for annual mean snow depth were located in western and northem NE, northwestem Xinjiang municipality, and northeastem QTP. The distribution of positive and negative trends for annu- al mean SWE were similar to that of snow depth in position, but not in range. The range with positive trends of SWE was not as large as that of snow depth, but the range with negative trends was larger.
基金Supported by the National Natural Science Foundation of China(Nos.42176018,41876010)the Laoshan Laboratory(No.LSKJ202202401)the Graduate Student Fellowship from the China Scholarship Council for Zhaohua WANG(No.201806330006)。
文摘Track density function(TDF)was computed for all Western North Pacific tropical cyclones(WNP TCs)tracks from 1950 to 2018,and the TDFs were further investigated using principal component analysis(PCA)to analyze their inter-annual spatial and temporal variability.Then,the relationships between each empirical orthogonal function(EOF)mode and the typhoon count,typhoon landfall count,track pattern,and the Qinghai-Xizang Plateau snow cover(QXPSC)were examined,and the possible physical mechanisms implied by the statistical relationship were explored.The results show the QXPSC significantly affected the surface-atmosphere heat exchange through snow cover(SC)level,then changed the East Asian summer monsoon regional circulation pattern,influenced the subtropical high-pressure system strength and location,and ultimately affected the WNP TCs track patterns and thus changed their landfall locations.