期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
Spatiotemporal Changes of Snow Depth in Western Jilin,China from 1987 to 2018
1
作者 WEI Yanlin LI Xiaofeng +3 位作者 GU Lingjia ZHENG Zhaojun ZHENG Xingming JIANG Tao 《Chinese Geographical Science》 SCIE CSCD 2024年第2期357-368,共12页
Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western ... Seasonal snow cover is a key global climate and hydrological system component drawing considerable attention due to glob-al warming conditions.However,the spatiotemporal snow cover patterns are challenging in western Jilin,China due to natural condi-tions and sparse observation.Hence,this study investigated the spatiotemporal patterns of snow cover using fine-resolution passive mi-crowave(PMW)snow depth(SD)data from 1987 to 2018,and revealed the potential influence of climate factors on SD variations.The results indicated that the interannual range of SD was between 2.90 cm and 9.60 cm during the snowy winter seasons and the annual mean SD showed a slightly increasing trend(P>0.05)at a rate of 0.009 cm/yr.In snowmelt periods,the snow cover contributed to an increase in volumetric soil water,and the change in SD was significantly affected by air temperature.The correlation between SD and air temperature was negative,while the correlation between SD and precipitation was positive during December and March.In March,the correlation coefficient exceeded 0.5 in Zhenlai,Da’an,Qianan,and Qianguo counties.However,the SD and precipitation were neg-atively correlated over western Jilin in October,and several subregions presented a negative correlation between SD and precipitation in November and April. 展开更多
关键词 snow cover snow depth(SD) climate changes passive microwave(PMW) western Jilin China
下载PDF
Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data
2
作者 Zhongnan Yan Xiaoping Pang +4 位作者 Qing Ji Yizhuo Chen Chongxin Luo Pei Fan Zeyu Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期105-117,共13页
The snow depth on sea ice is an extremely critical part of the cryosphere.Monitoring and understanding changes of snow depth on Antarctic sea ice is beneficial for research on sea ice and global climate change.The Mic... The snow depth on sea ice is an extremely critical part of the cryosphere.Monitoring and understanding changes of snow depth on Antarctic sea ice is beneficial for research on sea ice and global climate change.The Microwave Radiation Imager(MWRI)sensor aboard the Chinese FengYun-3D(FY-3D)satellite has great potential for obtaining information of the spatial and temporal distribution of snow depth on the sea ice.By comparing in-situ snow depth measurements during the 35th Chinese Antarctic Research Expedition(CHINARE-35),we took advantage of the combination of multiple gradient ratio(GR(36V,10V)and GR(36V,18V))derived from the measured brightness temperature of FY-3D MWRI to estimate the snow depth.This method could simultaneously introduce the advantages of high and low GR in the snow depth retrieval model and perform well in both deep and shallow snow layers.Based on this,we constructed a novel model to retrieve the FY-3D MWRI snow depth on Antarctic sea ice.The new model validated by the ship-based observational snow depth data from CHINARE-35 and the snow depth measured by snow buoys from the Alfred Wegener Institute(AWI)suggest that the model proposed in this study performs better than traditional models,with root mean square deviations(RMSDs)of 8.59 cm and 7.71 cm,respectively.A comparison with the snow depth measured from Operation IceBridge(OIB)project indicates that FY-3D MWRI snow depth was more accurate than the released snow depth product from the U.S.National Snow and Ice Data Center(NSIDC)and the National Tibetan Plateau Data Center(NTPDC).The spatial distribution of the snow depth from FY-3D MWRI agrees basically with that from ICESat-2;this demonstrates its reliability for estimating Antarctic snow depth,and thus has great potential for understanding snow depth variations on Antarctic sea ice in the context of global climate change. 展开更多
关键词 snow depth Antarctic sea ice passive microwave FY-3D
下载PDF
Combined effects of snow depth and nitrogen addition on ephemeral growth at the southern edge of the Gurbantunggut Desert,China 被引量:19
3
作者 LianLian FAN Yan LI +1 位作者 LiSong TANG Jian MA 《Journal of Arid Land》 SCIE CSCD 2013年第4期500-510,共11页
Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influen... Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants. 展开更多
关键词 snow depth soil water content N addition ephemeral plant plant density species richness
下载PDF
Increased Tibetan Plateau Snow Depth:An Indicator of the Connection between Enhanced Winter NAO and Late-Spring Tropospheric Cooling over East Asia 被引量:17
4
作者 辛晓歌 周天军 宇如聪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期788-794,共7页
The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase o... The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase of NAO, the Asian subtropical westerly jet intensifies and the India-Myanmar trough deepens. Both of these processes enhance ascending motion over the TP. The intensified upward motion, together with strengthened southerlies upstream of the India-Myanmar trough, favors stronger snowfall over the TP, which is associated with East Asian tropospheric cooling in the subsequent late spring (April-May). Hence, the decadal increase of winter snow depth over the TP after the late 1970s is proposed to be an indicator of the connection between the enhanced winter NAO and late spring tropospheric cooling over East Asia. 展开更多
关键词 Tibetan Plateau snow depth North Atlantic Oscillation (NAO) tropospheric cooling
下载PDF
Evaluation of Snow Depth and Snow Cover Fraction Simulated by Two Versions of the Flexible Global Ocean–Atmosphere–Land System Model 被引量:3
5
作者 XIA Kun WANG Bin +5 位作者 LI Lijuan SHEN Si HUANG Wenyu XU Shiming DONG Li LIU Li 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期407-420,共14页
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Fle... Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2. 展开更多
关键词 snow depth snow cover fraction FGOALS-s2 FGOALS-g2
下载PDF
Interannual Variability of Snow Depth over the Tibetan Plateau and Its Associated Atmospheric Circulation Anomalies 被引量:4
6
作者 Mao Jiang-Yu 《Atmospheric and Oceanic Science Letters》 2010年第4期213-218,共6页
The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data... The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon. 展开更多
关键词 Tibetan Plateau snow depth interannual variability atmospheric circulation anomalies
下载PDF
Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic 被引量:2
7
作者 Haihua Chen Lele Li Lei Guan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期43-53,共11页
This study cross-calibrated the brightness temperatures observed in the Arctic by using the FY-3B/MWRI L1 and the Aqua/AMSR-E L2A.The monthly parameters of the cross-calibration were determined and evaluated using rob... This study cross-calibrated the brightness temperatures observed in the Arctic by using the FY-3B/MWRI L1 and the Aqua/AMSR-E L2A.The monthly parameters of the cross-calibration were determined and evaluated using robust linear regression.The snow depth in case of seasonal ice was calculated by using parameters of the crosscalibration of data from the MWRI Tb.The correlation coefficients of the H/V polarization among all channels Tb of the two sensors were higher than 0.97.The parameters of the monthly cross-calibration were useful for the snow depth retrieval using the MWRI.Data from the MWRI Tb were cross-calibrated to the AMSR-E baseline.Biases in the data of the two sensors were optimized to approximately 0 K through the cross-calibration,the standard deviations decreased significantly in the range of 1.32 K to 2.57 K,and the correlation coefficients were as high as 99%.An analysis of the statistical distributions of the histograms before and after cross-calibration indicated that the FY-3B/MWRI Tb data had been well calibrated.Furthermore,the results of the cross-calibration were evaluated by data on the daily average Tb at 18.7 GHz,23.8 GHz,and 36.5 GHz(V polarization),and at 89 GHz(H/V polarization),and were applied to the snow depths retrieval in the Arctic.The parameters of monthly cross-calibration were found to be effective in terms of correcting the daily average Tb.The results of the snow depths were compared with those of the calibrated MWRI and AMSR-E products.Biases of 0.18 cm to 0.38 cm were observed in the monthly snow depths,with the standard deviations ranging from 4.19 cm to 4.80 cm. 展开更多
关键词 FY-3B AMSR-E brightness temperature(T^(b)) CROSS-CALIBRATION snow depth ARCTIC
下载PDF
Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia 被引量:1
8
作者 ZhiCai Li Yan Song +2 位作者 Wei Zhang Jing Zhang ZiNiu Xiao 《Research in Cold and Arid Regions》 CSCD 2016年第6期524-535,共12页
Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In th... Studies on the impact of solar activity on climate system are very important in understanding global climate change. Previous studies in this field were mostly focus on temperature, wind and geopotential height. In this paper, interdecadal correlations of solar activity with Winter Snow Depth Index (WSDI) over the Tibetan Plateau, Arctic Oscillation Index (AOI) and the East Asian Winter Monsoon Index (EAWMI) are detected respectively by using Solar Radio Flux (SRF), Total Solar Irradiance (TSI) and Solar Sunspot Number (SSN) data and statistical methods. Arctic Oscillation and East Asian winter monsoon are typical modes of the East Asian atmospheric circulation. Research results show that on inter-decadal time scale over 11-year solar cycle, the sun modulated changes of winter snow depth over the Tibetan Plateau and East Asian atmospheric circulation. At the fourth lag year, the correlation coefficient of SRF and snow depth is 0.8013 at 0.05 significance level by Monte-Carlo test method. Our study also shows that winter snow depth over the Tibetan Plateau has significant lead and lag correlations with Arctic Oscillation and the East Asian winter monsoon on long time scale. With more snow in winter, the phase of Arctic Oscillation is positive, and East Asian winter monsoon is weak, while with less snow, the parameters are reversed. An example is the winter of 2012/2013, with decreased Tibetan Plateau snow, phase of Arctic Oscillation was negative, and East Asian winter monsoon was strong. 展开更多
关键词 solar activity interdecadal correlation analysis snow depth over the Tibetan Plateau Arctic Oscillation (AO) East Asian Winter Monsoon
下载PDF
Ground-based GPS Used in the Snow Depth Survey of Greenland 被引量:3
9
作者 Shuangcheng ZHANG Meiling ZHOU +3 位作者 Yajie WANG Ning LIU Qi LIU Jilun PENG 《Journal of Geodesy and Geoinformation Science》 2021年第2期47-55,共9页
Snow cover is one of the important components of land cover,and it is necessary to accurately monitor the depth and coverage of snow cover.Using the GPS signal receiver data and the basic principle of snow depth detec... Snow cover is one of the important components of land cover,and it is necessary to accurately monitor the depth and coverage of snow cover.Using the GPS signal receiver data and the basic principle of snow depth detection based on GPS-MR technology,the snow depth of the three sites on the Greenland PBO network GLS1,GLS2,and GLS3 from 2012 to 2018 was obtained.The inversion snow depth is affected by site drift,which is a quite difference from the measured snow depth.Combined with the stable reference point,the velocity field distribution of Greenland Island and the U-direction component change value of the station can be obtained through GAMIT calculation.By analyzing the glacial flow and U-direction component,the influence of the site drift on the snow depth was deducted,and finally compared the corrected inversion snow depth and measured snow depth found that the two were better than before the correction,the results were significantly improved,and the consistency was good.The analysis of the experimental results showed that in extremely cold areas such as Greenland Island,affected by glaciers,the continuous,real-time,high-time resolution snow depth around the measured station obtained by ground-based GPS tracking stations has a large gap with the measured snow depth value,and the gap will gradually increase with time.By deducting the impact of glacier drift,the trend of the two is the same and the consistency is good.The correctness and feasibility of the application of ground-based GPS snow cover theory in the polar area further expand the application scope and practical value of ground-based GPS in snow monitoring. 展开更多
关键词 ground-based GPS GREENLAND GPS-MR snow depth time series
下载PDF
Assessment of Snow Depth over Arctic Sea Ice in CMIP6 Models Using Satellite Data
10
作者 Shengzhe CHEN Jiping LIU +3 位作者 Yifan DING Yuanyuan ZHANG Xiao CHENG Yongyun HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第2期168-186,共19页
Snow depth over sea ice is an essential variable for understanding the Arctic energy budget.In this study,we evaluate snow depth over Arctic sea ice during 1993-2014 simulated by 31 models from phase 6 of the Coupled ... Snow depth over sea ice is an essential variable for understanding the Arctic energy budget.In this study,we evaluate snow depth over Arctic sea ice during 1993-2014 simulated by 31 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)against recent satellite retrievals.The CMIP6 models capture some aspects of the observed snow depth climatology and variability.The observed variability lies in the middle of the models’simulations.All the models show negative trends of snow depth during 1993-2014.However,substantial spatiotemporal discrepancies are identified.Compared to the observation,most models have late seasonal maximum snow depth(by two months),remarkably thinner snow for the seasonal minimum,an incorrect transition from the growth to decay period,and a greatly underestimated interannual variability and thinning trend of snow depth over areas with frequent occurrence of multi-year sea ice.Most models are unable to reproduce the observed snow depth gradient from the Canadian Arctic to the outer areas and the largest thinning rate in the central Arctic.Future projections suggest that snow depth in the Arctic will continue to decrease from 2015 to 2099.Under the SSP5-8.5 scenario,the Arctic will be almost snow-free during the summer and fall and the accumulation of snow starts from January.Further investigation into the possible causes of the issues for the simulated snow depth by some models based on the same family of models suggests that resolution,the inclusion of a hightop atmospheric model,and biogeochemistry processes are important factors for snow depth simulation. 展开更多
关键词 snow depth Arctic sea ice CMIP6 SATELLITE PROJECTION
下载PDF
Machine learning model for snow depth estimation using a multisensory ubiquitous platform
11
作者 Sofeem NASIM Mourad OUSSALAH +1 位作者 Björn KLÖVE Ali Torabi HAGHIGHI 《Journal of Mountain Science》 SCIE CSCD 2022年第9期2506-2527,共22页
Snow depth estimation is an important parameter that guides several hydrological applications and climate change prediction.Despite advances in remote sensing technology and enhanced satellite observations,the estimat... Snow depth estimation is an important parameter that guides several hydrological applications and climate change prediction.Despite advances in remote sensing technology and enhanced satellite observations,the estimation of snow depth at local scale still requires improved accuracy and flexibility.The advances in ubiquitous and wearable technology promote new prospects in tackling this challenge.In this paper,a wearable IoT platform that exploits pressure and acoustic sensor readings to estimate and classify snow depth classes using some machine-learning models have been put forward.Significantly,the results of Random Forest classifier showed an accuracy of 94%,indicating a promising alternative in snow depth measurement compared to in situ,LiDAR,or expensive large-scale wireless sensor network,which may foster the development of further affordable ecological monitoring systems based on cheap ubiquitous sensors. 展开更多
关键词 snow depth Wearable technology Machine learning Random forest classifier
下载PDF
Estimating snow depth or snow water equivalent from space
12
作者 LiYun Dai Tao Che 《Research in Cold and Arid Regions》 CSCD 2022年第2期79-90,共12页
Satellite remote sensing is widely used to estimate snow depth and snow water equivalent(SWE)which are two key parameters in global and regional climatic and hydrological systems.Remote sensing techniques for snow dep... Satellite remote sensing is widely used to estimate snow depth and snow water equivalent(SWE)which are two key parameters in global and regional climatic and hydrological systems.Remote sensing techniques for snow depth mainly include passive microwave remote sensing,Synthetic Aperture Radar(SAR),Interferometric SAR(In SAR)and Lidar.Among them,passive microwave remote sensing is the most efficient way to estimate large scale snow depth due to its long time series data and high temporal frequency.Passive microwave remote sensing was utilized to monitor snow depth starting in 1978 when Nimbus-7 satellite with Scanning Multichannel Microwave Radiometer(SMMR)freely provided multi-frequency passive microwave data.SAR was found to have ability to detecting snow depth in 1980 s,but was not used for satellite active microwave remote sensing until 2000.Satellite Lidar was utilized to detect snow depth since the later period of 2000 s.The estimation of snow depth from space has experienced significant progress during the last 40 years.However,challenges or uncertainties still exist for snow depth estimation from space.In this study,we review the main space remote sensing techniques of snow depth retrieval.Typical algorithms and their principles are described,and problems or disadvantages of these algorithms are discussed.It was found that snow depth retrieval in mountainous area is a big challenge for satellite remote sensing due to complicated topography.With increasing number of freely available SAR data,future new methods combing passive and active microwave remote sensing are needed for improving the retrieval accuracy of snow depth in mountainous areas. 展开更多
关键词 snow depth snow water equivalent remote sensing SATELLITE
下载PDF
Interdecadal change of snow depth in winter over the Tibetan Plateau and its effect on summer precipitation in China
13
作者 Jing Zhang Yan Song +1 位作者 ZhiCai Li Ping Zhao 《Research in Cold and Arid Regions》 2012年第1期46-55,共10页
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961... This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961-2006. We used monthly precipitation and temperature data from 160 stations in China for 1951-2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer pre- cipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming. 展开更多
关键词 snow depth Tibetan Plateau interdecadal change global wanning East Asian summer monsoon
下载PDF
Spatial distribution of snow depth based on geographically weighted regression kriging in the Bayanbulak Basin of the Tianshan Mountains, China 被引量:5
14
作者 LIU Yang LI Lan-hai +2 位作者 CHEN Xi YANG Jin-Ming HAO Jian-Sheng 《Journal of Mountain Science》 SCIE CSCD 2018年第1期33-45,共13页
Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect ... Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution. 展开更多
关键词 KRIGING 空间插值 雪深 回归 加权 地理 分发 中国
下载PDF
Retrieval of Snow Depth on Sea Ice in the Arctic Using the FengYun-3B Microwave Radiation Imager 被引量:2
15
作者 LI Lele CHEN Haihua GUAN Lei 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第3期580-588,共9页
Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is con... Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager(MWRI) on board the FengYun(FY)-3 B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS(AMSR-E) Level 2 A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice(ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between-1.01 and-0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months. 展开更多
关键词 MWRI AMSRE BRIGHTNESS temperature snow depth inter-sensor calibration sea ice concentration
下载PDF
Retrieval Snow Depth by Artificial Neural Network Methodology from Integrated AMSR-E and In-situ Data——A Case Study in Qinghai-Tibet Plateau 被引量:1
16
作者 CAO Yungang YANG Xiuchun ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2008年第4期356-360,共5页
On the basis of artificial neural network (ANN) model, this paper presents an algorithm for inversing snow depth with use of AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System (EOS)) dataset, i.e., ... On the basis of artificial neural network (ANN) model, this paper presents an algorithm for inversing snow depth with use of AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System (EOS)) dataset, i.e., brightness temperature at 18.7 and 36.5GHz in Qinghai-Tibet Plateau during the snow season of 2002-2003. In order to overcome the overfitting problem in ANN modeling, this methodology adopts a Bayesian regularization approach. The experiments are performed to compare the results obtained from the ANN-based algorithm with those obtained from other existing algorithms, i.e., Chang algorithm, spectral polarization difference (SPD) algorithm, and temperature gradient (TG) algorithm. The experimental results show that the presented algorithm has the highest accuracy in estimating snow depth. In addition, the effects of the noises in datasets on model fitting can be decreased due to adopting the Bayesian regularization approach. 展开更多
关键词 人工神经网络 贝叶斯规则 青藏高原 积雪厚度 温度
下载PDF
A novel fine-resolution snow depth retrieval model to revealdetailed spatiotemporal patterns of snow cover in NortheastChina 被引量:2
17
作者 Yanlin Wei Xiaofeng Li +2 位作者 Lingjia Gu Xingming Zheng Tao Jiang 《International Journal of Digital Earth》 SCIE EI 2023年第1期1164-1185,共22页
Seasonal snow cover is a key component of the global climate and hydrological system,it has drawn considerable attention under global warming conditions.Although several passive microwave(PMW)snow depth(SD)products ha... Seasonal snow cover is a key component of the global climate and hydrological system,it has drawn considerable attention under global warming conditions.Although several passive microwave(PMW)snow depth(SD)products have been developed since the 1970s,they inherit noticeable errors and uncertainties when representing spatial distributions and temporal changes of SD,especially in complex mountainous regions.In this paper,we developed afine-resolution SD retrieval model(FSDM)using machine learning to improve SD estimation quality for Northeast China and produced a long-term,fine-resolution,daily SD dataset.The accuracies of the FSDM dataset were evaluated against in-situ SD data along with existing SD products.The results showed the FSDM dataset provided satisfactory inversion accuracy in spatiotemporal evaluation,with the root-mean-square error(RMSE),bias,and correlation coefficient(R)of 7.10 cm,-0.13 cm,and 0.60.Additionally,we analyzed the spatiotemporal variations of SD in Northeast China and found that snow cover was mainly distributed in the Greater Khingan Range,Lesser Khingan Mountains,and Changbai Mountain regions.The SD exhibited high-low distribution patterns with the increased latitude.The annual mean SD slightly increased at the rate of 0.029 cm/year during 1987-2018. 展开更多
关键词 Passive microwave remote sensing snow depth inversion machine learning fine resolution Northeast China
原文传递
Historical and real-time estimation of snow depth in Eurasia based on multiple passive microwave data
18
作者 Li-Yun DAI Li-Juan MA +2 位作者 Su-Ping NIE Si-Yu WEI Tao CHE 《Advances in Climate Change Research》 SCIE CSCD 2023年第4期537-545,共9页
Current snow depth datasets demonstrate large discrepancies in the spatial pattern in Eurasia,and the lagging updates of datasets do not meet the operational requirements of the meteorological service department.This ... Current snow depth datasets demonstrate large discrepancies in the spatial pattern in Eurasia,and the lagging updates of datasets do not meet the operational requirements of the meteorological service department.This study developed a dynamic retrieval method for daily snow depth over Eurasia based on cross-sensor calibrated microwave brightness temperatures to enhance retrieval accuracy and meet the requirements of operational work.These brightness temperatures were detected by microwave radiometer imager carried on the FengYun 3(FY-3)satellite and the special sensor microwave imager/sounder carried on the USA Defense Meteorological Satellite Program series satellites,which use the fewest sensors to provide the longest data and consequently introduce minimal errors during inter-sensor calibration.Firstly,inter-sensor calibration was conducted amongst brightness temperatures collected by the three sensors.A spatiotemporal dynamic relationship between snow depth and microwave brightness temperature gradient was then established,overcoming the large uncertainties induced by varying snow characteristics.This relationship can be utilised in FY-3 satellite data for operational service to obtain real-time snow depth.The generated daily snow depth dataset from 1988 to 2021 presents similar spatial patterns of snow depth to those observed in situ.Against in situ snow depth,the overall bias and root mean square error are−2.04 and 6.49 cm,respectively,facilitating considerable improvements in accuracy compared with the Advanced Microwave Scanning Radiometer 2 snow depth product,which adopts the static algorithm.Further analysis shows an overall decreasing trend from 1988 to 2021 for annual and monthly mean snow depths,demonstrating a noticeable reduction since around 2000.The reduction in monthly mean snow depth started earlier in shallow snow months than in deep snow months. 展开更多
关键词 snow depth Passive microwave remote sensing EURASIA
原文传递
Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan 被引量:1
19
作者 MASHTAYEVA Shamshagul DAI Liyun +5 位作者 CHE Tao SAGINTAYEV Zhanay SADVAKASOVA Saltanat KUSSAINOVA Marzhan ALIMBAYEVA Danara AKYNBEKKYZY Meerzhan 《Journal of Meteorological Research》 SCIE CSCD 2016年第6期1033-1043,共11页
Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was develope... Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged regularity of latitudinal zonality from 15 to 20 cm in the eastern region and were characterized by spatial The ASDW in the mountainous area often exceeded 20 cm. 展开更多
关键词 snow cover snow depth remote sensing passive microwave spatial and temporal variations Kazakhstan
原文传递
Generation of daily snow depth from multi-source satellite images and in situ observations
20
作者 CAO Guangzhen HOU Peng +1 位作者 ZHENG Zhaojun TANG Shihao 《Journal of Geographical Sciences》 SCIE CSCD 2015年第10期1235-1246,共12页
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ... Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method. 展开更多
关键词 data fusion daily snow depth multi-source satellite images passive microwave remote sensing IMS in situ observations
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部